Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 868579, 2022.
Article in English | MEDLINE | ID: mdl-35720349

ABSTRACT

The chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, ß-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving ß-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the ß-arrestin-bias and the atypical nature of CXCR3-B.


Subject(s)
Chemokines , Signal Transduction , Alternative Splicing , Chemokine CXCL11/metabolism , Chemokines/metabolism , beta-Arrestins/metabolism , beta-Arrestins/pharmacology
2.
ACS Pharmacol Transl Sci ; 4(2): 813-823, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860204

ABSTRACT

Adrenomedullin (ADM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two peptides with vasodilative, bronchodilative, and angiogenic properties, originating from a common precursor, proADM. Previous studies proposed that the atypical chemokine receptor ACKR3 might act as a low-affinity scavenger for ADM, regulating its availability for its cognate receptor calcitonin receptor-like receptor (CLR) in complex with a receptor activity modifying protein (RAMP). In this study, we compared the activation of ACKR3 by ADM and PAMP, as well as other related members of the calcitonin gene-related peptide (CGRP) family. Irrespective of the presence of RAMPs, ADM was the only member of the CGRP family to show moderate activity toward ACKR3. Remarkably, PAMP, and especially further processed PAMP-12, had a stronger potency toward ACKR3 than ADM. Importantly, PAMP-12 induced ß-arrestin recruitment and was efficiently internalized by ACKR3 without inducing G protein or ERK signaling in vitro. Our results further extend the panel of endogenous ACKR3 ligands and broaden ACKR3 functions to a regulator of PAMP-12 availability for its primary receptor Mas-related G-protein-coupled receptor member X2 (MrgX2).

3.
Cancers (Basel) ; 13(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801414

ABSTRACT

Atypical chemokine receptors (ACKRs) are important regulators of chemokine functions. Among them, the atypical chemokine receptor ACKR2 (also known as D6) has long been considered as a scavenger of inflammatory chemokines exclusively from the CC family. In this study, by using highly sensitive ß-arrestin recruitment assays based on NanoBiT and NanoBRET technologies, we identified the inflammatory CXC chemokine CXCL10 as a new strong agonist ligand for ACKR2. CXCL10 is known to play an important role in the infiltration of immune cells into the tumour bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2 is able to internalize and reduce the availability of CXCL10 in the extracellular space. Moreover, we found that, in contrast to CC chemokines, CXCL10 activity towards ACKR2 was drastically reduced by the dipeptidyl peptidase 4 (DPP4 or CD26) N-terminal processing, pointing to a different receptor binding pocket occupancy by CC and CXC chemokines. Overall, our study sheds new light on the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2 in many physiological and pathological processes, including tumour immunology. Our data also testify that systematic reassessment of chemokine-receptor pairing is critically needed as important interactions may remain unexplored.

4.
J Leukoc Biol ; 109(2): 373-376, 2021 02.
Article in English | MEDLINE | ID: mdl-32480426

ABSTRACT

Atypical chemokine receptors (ACKRs) have emerged as important regulators or scavengers of homeostatic and inflammatory chemokines. Among these atypical receptors, ACKR4 is reported to bind the homeostatic chemokines CCL19, CCL21, CCL25 and CXCL13. In a recent study by Matti et al., the authors show that ACKR4 is also a receptor for CCL20, previously established to bind to CCR6 only. They provide convincing evidence that, just as for its other chemokine ligands, ACKR4 rapidly internalizes CCL20 both in vitro and in vivo. Independently of this discovery, we undertook a screening program aiming at reassessing the activity of the 43 human chemokines toward ACKR4 using a highly sensitive ß-arrestin recruitment assay. This systematic analysis confirmed CCL20 as a new agonist ligand for ACKR4 in addition to CCL19, CCL21, and CCL25. Furthermore, CCL22, which plays an important role in both homeostasis and inflammatory responses, and is known as a ligand for CCR4 and ACKR2 was found to also act as a potent partial agonist of ACKR4. In contrast, agonist activity of CXCL13 toward ACKR4 was disproved. This independent wide-range systematic study confirms the pairing of CCL20 with ACKR4 newly discovered by Matti and co-authors, and further refines the spectrum of chemokines activating ACKR4.


Subject(s)
Chemokine CCL20/metabolism , Chemokine CCL22/metabolism , Chemokine CXCL13/metabolism , Receptors, CCR/agonists , Receptors, CCR/metabolism , Amino Acid Sequence , Chemokine CCL22/chemistry , Humans , Ligands , Phylogeny , Protein Binding , beta-Arrestins/metabolism
5.
Cells ; 8(6)2019 06 18.
Article in English | MEDLINE | ID: mdl-31216755

ABSTRACT

First thought to orchestrate exclusively leukocyte trafficking, chemokines are now acknowledged for their multiple roles in the regulation of cell proliferation, differentiation, and survival. Dysregulation of their normal functions contributes to various pathologies, including inflammatory diseases and cancer. The two chemokine receptor 3 variants CXCR3-A and CXCR3-B, together with their cognate chemokines (CXCL11, CXCL10, CXCL9, CXCL4, and CXCL4L1), are involved in the control but also in the development of many tumors. CXCR3-A drives the infiltration of leukocytes to the tumor bed to modulate tumor progression (paracrine axis). Conversely, tumor-driven changes in the expression of the CXCR3 variants and their ligands promote cancer progression (autocrine axis). This review summarizes the anti- and pro-tumoral activities of the CXCR3 variants and their associated chemokines with a focus on the understanding of their distinct biological roles in the tumor microenvironment.


Subject(s)
Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Tumor Microenvironment/physiology , Chemokines/genetics , Chemokines/metabolism , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Humans , Ligands , Neoplasms/metabolism , Tumor Microenvironment/genetics
6.
Biochem Pharmacol ; 153: 299-309, 2018 07.
Article in English | MEDLINE | ID: mdl-29530506

ABSTRACT

The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on ß-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus.


Subject(s)
Chemokines, CXC/metabolism , DNA Mutational Analysis/methods , Extracellular Fluid/metabolism , Mutation/physiology , Receptors, CXCR/agonists , Receptors, CXCR/metabolism , Amino Acid Sequence , Cell Line , Chemokines, CXC/genetics , Humans , Protein Binding , Receptors, CXCR/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...