Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Clin Nutr ; 43(9): 1929-1936, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024772

ABSTRACT

BACKGROUND: Concentrations of vitamin D (VitD) and 25-hydroxyvitamin D (25OHD) in breastmilk are low despite the essential role of VitD for normal infant bone development, yet additional metabolic forms of vitamin D may be present. This study evaluates the contribution of sulfated vitamin D metabolites, vitamin D3-sulfate (VitD3-S) and 25-hydroxyvitamin D3-sulfate (25OHD3-S) for lactating women and assesses the response to high-dose VitD3 supplementation. METHODS: Serum and breastmilk were measured before and after 28 days with 5000 IU/day VitD3 intake in 20 lactating women. Concentrations of VitD3-S and 25OHD3-S in milk, and 25OHD2, 25OHD3, 25OHD3-S, VitD3 and VitD3-S in serum were determined by mass spectrometry. RESULTS: Baseline vitamin D status was categorized as sufficient (mean ± SD serum 25OHD3 69 ± 19 nmol/L), and both serum VitD3 and 25OHD3 increased following supplementation (p < 0.001). 25OHD3-S was 91 ± 19 nmol/L in serum and 0.47 ± 0.09 nmol/L in breastmilk. VitD3-S concentrations were 2.92 ± 0.70 nmol/L in serum and 6.4 ± 3.9 nmol/L in breastmilk. Neither sulfated metabolite significantly changed with supplementation in either serum or breastmilk. CONCLUSIONS: Sulfated vitamin D metabolites have prominent roles for women during lactation with 25OHD3-S highly abundant in serum and VitD3-S distinctly abundant in breastmilk. These data support the notion that 25OHD3-S and VitD3-S may have physiological relevance during lactation and nutritional usage for nursing infants.

3.
Article in English | MEDLINE | ID: mdl-38101284

ABSTRACT

Sulfated metabolites of vitamin D have been suggested to be in breastmilk, although current methods to measure sulfated vitamin D compounds in breastmilk by liquid chromatography-tandem mass spectrometry (LC-MS/MS) have not adequately accounted for increased aqueous solubility of these sulfated metabolites. The purpose of this study was to generate a method of LC-MS/MS for measuring vitamin D3-3-sulfate (VitD3-S) and 25-hydroxyvitamin D3-3-sulfate (25OHD3-S) specifically in human breastmilk. The resulting method uses methanol to precipitate protein and solid phase extraction to prepare the samples for LC-MS/MS. The limits of quantification for analytes in solvent were 0.23 ng/mL VitD3-S and 0.2 ng/mL 25OHD3-S. Various experiments observed concentrations ranging 0.53 to 1.7 ng/mL VitD3-S and ≤ 0.29 ng/mL 25OHD3-S. Both analytes were present in aqueous skim milk, demonstrating the enhanced aqueous solubility of these vitamin D sulfates. In conclusion, we describe an effective method for measuring VitD3-S and 25OHD3-S in breastmilk by LC-MS/MS.


Subject(s)
Calcifediol , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Milk, Human , Sulfates , Liquid Chromatography-Mass Spectrometry , Vitamin D , Vitamins , 25-Hydroxyvitamin D 2
4.
J Steroid Biochem Mol Biol ; 228: 106247, 2023 04.
Article in English | MEDLINE | ID: mdl-36639037

ABSTRACT

The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given.


Subject(s)
Vitamin D Deficiency , Vitamin D , Humans , Vitamins
5.
Curr Opin Insect Sci ; 47: 82-89, 2021 10.
Article in English | MEDLINE | ID: mdl-34044181

ABSTRACT

The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.


Subject(s)
Malpighian Tubules , Nephrolithiasis , Animals , Calcium Oxalate , Disease Models, Animal , Drosophila melanogaster/genetics
6.
J Appl Physiol (1985) ; 131(1): 95-106, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34013750

ABSTRACT

Diseases or conditions where diaphragm muscle (DIAm) function is impaired, including chronic obstructive pulmonary disease, cachexia, asthma, and aging, are associated with an increased risk of pulmonary symptoms, longer duration of hospitalizations, and increasing requirements for mechanical ventilation. Vitamin D deficiency is associated with proximal muscle weakness that resolves following therapy with vitamin D3. Skeletal muscle expresses the vitamin D receptor (VDR), which responds to the active form of vitamin D, 1,25-dihydroxyvitamin D3 by altering gene expression in target cells. In knockout mice without skeletal muscle VDRs, there is marked atrophy of muscle fibers and a change in skeletal muscle biochemistry. We used a tamoxifen-inducible skeletal muscle Cre recombinase in Vdrfl/fl mice (Vdrfl/fl actin.iCre+) to assess the role of muscle-specific VDR signaling on DIAm-specific force, fatigability, and fiber type-dependent morphology. Vdrfl/fl actin.iCre+ mice treated with vehicle and Vdrfl/fl mice treated with tamoxifen served as controls. Seven days following the final treatment, mice were euthanized, the DIAm was removed, and isometric force and fatigue were assessed in DIAm strips using direct muscle stimulation. The proportion and cross-sectional areas of DIAm fiber types were evaluated by immunolabeling with myosin heavy chain antibodies differentiating type I, IIa and IIx, and/or IIb fibers. We show that in mice with skeletal muscle-specific VDR deletion, maximum specific force and residual force following fatigue are impaired, along with a selective atrophy of type IIx and/or IIb fibers. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.NEW & NOTEWORTHY Vitamin D deficiency and vitamin D receptor (VDR) polymorphisms are associated with adverse pulmonary and diaphragm muscle (DIAm)-associated respiratory outcomes. We used a skeletal muscle-specific tamoxifen-inducible VDR knockout to investigate DIAm dysfunction following reduced VDR signaling. Marked DIAm weakness and atrophy of type IIx and/or IIb fibers are present in muscle-specific tamoxifen-induced VDR knockout mice compared with controls. These results show that the VDR has a significant biological effect on DIAm function independent of systemic effects on mineral metabolism.


Subject(s)
Diaphragm , Receptors, Calcitriol , Animals , Mice , Mice, Knockout , Muscle Fibers, Skeletal , Muscle Weakness/genetics , Muscle, Skeletal , Receptors, Calcitriol/genetics , Vitamin D
7.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G253-G260, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32628073

ABSTRACT

25-Hydroxyvitamin D3-3ß-glucuronic acid (25OHD-Gluc) is produced in the liver and is a constituent of human blood and bile. Bacterial glucuronidases (GUS) in mammalian digestive microbiota cleave glucuronide conjugates, such as 25OHD-Gluc, and release the free aglycone (i.e., 25OHD) inside the intestinal lumen. We hypothesized that 25OHD-Gluc would elicit a VDR-dependent mRNA response in the colon after cleavage by gut microbiota. The activity of 25OHD-Gluc was investigated by measuring expression of cytochrome P450 24A1 (Cyp24) mRNA both in vitro and in vivo. In cell culture, Caco2 cells responded to 25OHD-Gluc, whereas HT29 cells did not. When coincubated with GUS, both cell lines elicited a robust response as indicated by a 5 Ct (32-fold) increase in Cyp24 mRNA. In vitamin D-sufficient mice, we found that both oral and subcutaneous administration of 1 nmol 25OHD-Gluc induced expression of Cyp24 mRNA in the colon whereas 25OHD did not. In contrast, 25OHD, but not 25OHD-Gluc, was active in the duodenum. When the jejunum was surgically ligated to block flow of digesta to the colon, neither oral nor subcutaneous administration of 2 nmol 25OHD-Gluc was able to induce expression of Cyp24 in the colon. Our findings suggest that 25OHD-Gluc, a vitamin D metabolite found in bile, induces VDR-mediated responses in the colon by crossing the apical membrane of the colon epithelium.NEW & NOTEWORTHY We found that 25OHD-Gluc, an endogenously produced metabolite, is delivered to the colon via bile to induce vitamin D-mediated responses in the colon.


Subject(s)
Colon/metabolism , Gene Expression Regulation/drug effects , Vitamin D/analogs & derivatives , Animals , Caco-2 Cells , Glucuronides , HT29 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Vitamin D/chemistry , Vitamin D/metabolism , Vitamin D/pharmacology
8.
J Nutr ; 150(3): 427-433, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31665381

ABSTRACT

BACKGROUND: 25-Hydroxycholecalciferol [25(OH)D] is the predominant circulating metabolite of vitamin D and serves as the precursor for 1α,25-dihydroxycholecalciferol [1,25(OH)2D], the hormonally active form. The presence of 1α-hydroxylase (1α-OHase) in the intestine suggests that 1,25(OH)2D can be produced from 25(OH)D, but the effects of oral 25(OH)D on the intestine have not been determined. OBJECTIVES: We investigated the acute intestinal response to orally consumed 25(OH)D in mice by assessing mRNA induction of cytochrome p450 family 24 subfamily A member 1 (Cyp24), a vitamin D-dependent gene. The mechanism of action then was determined through in vitro analyses with Caco2 and HT-29 cells. METHODS: Adult male C57BL6 mice were given a single oral dose of 40, 80, 200, or 400 ng 25(OH)D (n = 4 per dose) or vehicle (n = 3), and then killed 4 h later to evaluate the duodenal expression of Cyp24 mRNA by qPCR and RNA in situ hybridization. The 25(OH)D-mediated response was also evaluated with Caco2 and HT-29 cells by inhibition assay and dose-response analysis. A cytochrome p450 family 27 subfamily B member 1 (CYP27B1) knockdown of HT-29 was created to compare the dose-response parameters with wild-type HT-29 cells. RESULTS: Oral 25(OH)D induced expression of Cyp24 mRNA in the duodenum of mice with 80 ng 25(OH)D by 3.3 ± 0.8 ΔΔCt compared with controls (P < 0.05). In vitro, both Caco2 and HT-29 cells responded to 25(OH)D treatment with 200-fold and 175-fold greater effective concentration at 50% maximal response than 1,25(OH)2D, yet inhibition of 1α-OHase and knockdown of CYP27B1 had no effect on the responses. CONCLUSIONS: In mice, orally consumed 25(OH)D elicits a vitamin D-mediated response in the duodenum. In vitro assessments suggest that the response from 25(OH)D does not require activation by 1α-OHase and that 25(OH)D within the intestinal lumen acts as a vitamin D receptor agonist.


Subject(s)
Calcifediol/administration & dosage , Duodenum/drug effects , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Administration, Oral , Animals , Caco-2 Cells , Calcifediol/pharmacology , Cytochrome P450 Family 24/genetics , Dose-Response Relationship, Drug , Gene Knockdown Techniques , HT29 Cells , Humans , Male , Mice , Mice, Inbred C57BL
9.
J Steroid Biochem Mol Biol ; 186: 56-60, 2019 02.
Article in English | MEDLINE | ID: mdl-30236486

ABSTRACT

1,25-Dihydroxyvitamin D3 (1,25(OH)2D) elicits a transcriptional response in the intestines. Assessments of this response are often derived from crude tissue homogenates and eliminate the ability to discriminate among different cell types. Here, we used an RNA in situ hybridization assay, RNAScope (Advanced Cell Diagnostics, Newark, CA), to identify the cells in the intestine that respond to 1,25(OH)2D with expression of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1) mRNA. Mice were gavaged with a single bolus dose of 1,25(OH)2D to target the duodenum or a glucuronic acid conjugate of 1,25(OH)2D, ß-G-1,25(OH)2D, to target the colon. QRT-PCR analysis of Cyp24a1 mRNA verified that the 1,25(OH)2D-induced responses were present. RNAScope revealed that the mRNA response present after six hours is limited to mature enterocytes exposed to the intestinal lumen in both the duodenum and colon. No detectable expression was observed in goblet cells, lamina propria, muscularis mucosa muscle, submucosa and submucosal lymphoid follicles, or tunica muscularis. Our findings have identified epithelial enterocytes to be the intestinal targets for 1,25(OH)2D in both the duodenum and colon.


Subject(s)
Intestines/drug effects , Up-Regulation/drug effects , Vitamin D3 24-Hydroxylase/genetics , Vitamin D/analogs & derivatives , Vitamins/pharmacology , Animals , Colon/cytology , Colon/drug effects , Colon/metabolism , Colon/ultrastructure , Duodenum/cytology , Duodenum/drug effects , Duodenum/metabolism , Duodenum/ultrastructure , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure , Intestines/cytology , Intestines/ultrastructure , Male , Mice , RNA, Messenger/genetics , Vitamin D/pharmacology
10.
Adipocyte ; 6(4): 284-292, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28792779

ABSTRACT

Our objectives were to investigate fatty acid composition variation amongst adipose tissue sites, breed effects on fat quality, and the relationship of pork fat quality to fresh pork quality. Barrows and gilts (n = 347) of five purebred and one commercial crossbred line were fed commercial swine diets with DDGS inclusion at 30% (as fed) from 31.8 kg body weight until 30-d prior to harvest at 111.4 kg. Immediately after harvest, hot carcass weight was determined, adipose tissue was collected from the back, belly, and jowl, and meat samples were taken from the longissimus muscle for evaluation of pork quality. Iodine values (IV) varied between anatomical site and breed. Jowl fat IV were correlated to back and belly fat IV. Minor but significant correlations were observed between IV and meat quality characteristics. These results support our hypotheses that minor relationships exist between fat and fresh pork quality and that IV vary by anatomical location.


Subject(s)
Adipose Tissue/chemistry , Food Analysis , Food Quality , Iodine/analysis , Red Meat/analysis , Animals , Breeding , Fatty Acids/analysis , Female , Male , Swine
11.
Adipocyte ; 6(2): 102-111, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28425850

ABSTRACT

Adipocyte sizes from adipose tissue of mature animals form a bimodal distribution, thus reporting mean cell size is misleading. The objectives of this study were to develop a robust method for testing bimodality of porcine adipocytes, describe the size distribution with an informative metric, and statistically test hypertrophy and appearance of new small adipocytes, possibly resulting from hyperplasia or lipid filling of previously divided fibroblastic cells. Ninety-three percent of adipose samples measured were bimodal (P < 0.0001); therefore, we describe and propose a method of testing hyperplasia or lipid filling of previously divided fibroblastic cells based upon the probability of an adipocyte falling into 2 chosen competing "bins" as adiposity increases. We also conclude that increased adiposity is correlated positively with an adipocyte being found in the minor mode (r = 0.46) and correlated negatively with an adipocyte being found in the major mode (r = -0.22), providing evidence of either hyperplasia or lipid filling of previously divided fibroblastic cells. We additionally conclude that as adiposity increases, the mode of the major distribution of cells occurs at a larger diameter of adipocyte, indicating hypertrophy.


Subject(s)
Adipocytes/cytology , Adipose Tissue/cytology , Biometry/methods , Adipocytes/physiology , Adipogenesis , Adipose Tissue/physiology , Adiposity/physiology , Animals , Cell Size , Hyperplasia/classification , Hyperplasia/pathology , Hyperplasia/veterinary , Hypertrophy , Models, Animal , Obesity/pathology , Swine
12.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1288-96, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27009052

ABSTRACT

Heat stress causes morbidity and mortality in humans and animals and threatens food security by limiting livestock productivity. Inflammatory signaling may contribute to heat stress-mediated skeletal muscle dysfunction. Previously, we discovered increased circulating endotoxin and intramuscular oxidative stress and TNF-α protein abundance, but not inflammatory signaling following 24 and 72 h of heat stress. Thus the purpose of this investigation was to clarify the role of inflammatory signaling in heat-stressed skeletal muscle. Crossbred gilts (n = 8/group) were assigned to either thermal neutral (24°C), heat stress (37°C), or pair-fed thermal neutral (24°C) conditions for 12 h. Following treatment, animals were euthanized, and the semitendinosus red (STR) and white (STW) were recovered. Heat stress did not alter inflammatory signaling in STW. In STR, relative heat shock protein abundance was similar between groups, as was nuclear content of heat shock factor 1. In whole homogenate, relative abundance of the NF-κB activator inhibitory κB kinase-α was increased by heat stress, although abundance of NF-κB was similar between groups. Relative abundance of phosphorylated NF-κB was increased by heat stress in nuclear fractions. Activator protein-1 (AP-1) signaling was similar between groups. While there were few differences in transcript expression between thermal neutral and heat stress, 80 and 56% of measured transcripts driven by NF-κB or AP-1, respectively, were increased by heat stress compared with pair-fed thermal neutral. Heat stress also caused a reduction in IL-6 transcript and relative protein abundance. These data demonstrate that short-term heat stress causes inflammatory signaling through NF-κB in oxidative, but not glycolytic, skeletal muscle.


Subject(s)
Cytokines/immunology , Heat Stress Disorders/immunology , Heat-Shock Response/immunology , Inflammation Mediators/immunology , Muscle, Skeletal/immunology , Myositis/immunology , Animals , Inflammasomes/immunology , Reactive Oxygen Species/immunology , Signal Transduction/immunology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...