Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Autoimmun ; 53: 33-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24583068

ABSTRACT

We generated a mouse model with a 162 nt AU-rich element (ARE) region deletion in the 3' untranslated region (3'UTR) of the interferon-gamma (IFN-γ) gene that results in chronic circulating serum IFN-γ levels. Mice homozygous for the ARE deletion (ARE-Del) (-/-) present both serologic and cellular abnormalities typical of patients with systemic lupus erythematosus (SLE). ARE-Del(-/-) mice display increased numbers of pDCs in bone marrow and spleen. Addition of IFN-γ to Flt3-ligand (Flt3L) treated in vitro bone marrow cultures results in a 2-fold increase in pDCs with concurrent increases in IRF8 expression. Marginal zone B (MZB) cells and marginal zone macrophages (MZMs) are absent in ARE-Del(-/-) mice. ARE-Del(+/-) mice retain both MZB cells and MZMs and develop no or mild autoimmunity. However, low dose clodronate treatment in ARE-Del(+/-) mice specifically eliminates MZMs and promotes anti-DNA antibody development and glomerulonephritis. Our findings demonstrate the consequences of a chronic IFN-γ milieu on B220(+) cell types and in particular the impact of MZB cell loss on MZM function in autoimmunity. Furthermore, similarities between disease states in ARE-Del(-/-) mice and SLE patients suggest that IFN-γ may not only be a product of SLE but may be critical for disease onset and progression.


Subject(s)
AU Rich Elements/genetics , Base Sequence , Interferon-gamma , Lupus Nephritis/immunology , Sequence Deletion , Animals , Antibodies, Antinuclear/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Lupus Nephritis/genetics , Macrophages/immunology , Macrophages/pathology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Knockout
2.
Blood ; 117(2): 575-84, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-20971950

ABSTRACT

The interleukin (IL)-22R1 chain of the heterodimeric IL-22 receptor is not expressed on normal leukocytes, but this receptor is expressed on T cells from anaplastic lymphoma kinase-positive (ALK(+)) anaplastic large cell lymphoma (ALCL) patients. To investigate the consequences of aberrant expression of this receptor on lymphocytes, we generated transgenic mice that express IL-22R1 on lymphocytes. The health of these animals progressively deteriorated at 8 to 12 weeks of age, as they displayed respiratory distress, rough coat and sluggish movement, and subsequent lethality due to multiorgan inflammation. The IL-22R1 transgenic animals developed neutrophilia that correlated with increased levels of circulating IL-17 and granulocyte colony-stimulating factor. In addition, these mice had increased serum IL-22 levels, suggesting that T cells expressing IL-22R1 generate IL-22 in a positive autoregulatory loop. As a result of the mouse model findings, we analyzed circulating cytokine levels in ALK(+)ALCL patients and detected elevated levels of IL-22, IL-17, and IL-8 in untreated patient samples. Importantly, IL-22 and IL-17 were undetectable in all patients who were in complete remission after chemotherapy. This study documents a previously unknown role of IL-22R1 in inflammation and identifies the involvement of IL-22R1/IL-22 in ALK(+)ALCL.


Subject(s)
Inflammation/metabolism , Interleukins/metabolism , Lymphoma, Large-Cell, Anaplastic/metabolism , Receptors, Interleukin/metabolism , Anaplastic Lymphoma Kinase , Animals , Blotting, Western , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Inflammation/genetics , Interleukin-17/metabolism , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases , Receptors, Interleukin/genetics , Interleukin-22
3.
J Interferon Cytokine Res ; 26(10): 706-18, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17032165

ABSTRACT

The proinflammatory cytokine, interleukin-18 (IL-18), is a natural killer (NK) cell activator that induces NK cell cytotoxicity and interferon-gamma (IFN-gamma) expression. In this report, we define a novel role for IL-18 as an NK cell protective agent. Specifically, IL-18 prevents NK cell death initiated by different and distinct stress mechanisms. IL-18 reduces NK cell self-destruction during NK-targeted cell killing, and in the presence of staurosporin, a potent apoptotic inducer, IL-18 reduces caspase-3 activity. The critical regulatory step in this process is downstream of the mitochondrion and involves reduced cleavage and activation of caspase-9 and caspase-3. The ability of IL-18 to regulate cell survival is not limited to a caspase death pathway in that IL-18 augments tumor necrosis factor (TNF) signaling, resulting in increased and prolonged mRNA expression of c-apoptosis inhibitor 2 (cIAP2), a prosurvival factor and caspase-3 inhibitor, and TNF receptor-associated factor 1 (TRAF1), a prosurvival protein. The cumulative effects of IL-18 define a novel role for this cytokine as a molecular survival switch that functions to both decrease cell death through inhibition of the mitochondrial apoptotic pathway and enhance TNF induction of prosurvival factors.


Subject(s)
Apoptosis , Inhibitor of Apoptosis Proteins/biosynthesis , Interleukin-18/pharmacology , Killer Cells, Natural/immunology , Signal Transduction , Cells, Cultured , Humans , Inflammation Mediators/pharmacology , Inhibitor of Apoptosis Proteins/genetics , Killer Cells, Natural/drug effects , NF-kappa B/metabolism , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/drug effects , TNF Receptor-Associated Factor 1/biosynthesis , TNF Receptor-Associated Factor 1/genetics , Tumor Necrosis Factor-alpha/pharmacology
4.
Blood ; 104(10): 3276-84, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15265789

ABSTRACT

Interferon-gamma (IFN-gamma) production and cytolytic activity are 2 major biologic functions of natural killer (NK) cells that are important for innate immunity. We demonstrate here that these functions are compromised in human NK cells treated with peroxisome proliferator-activated-gamma (PPAR-gamma) ligands via both PPAR-gamma-dependent and -independent pathways due to variation in PPAR-gamma expression. In PPAR-gamma-null NK cells, 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), a natural PPAR-gamma ligand, reduces IFN-gamma production that can be reversed by MG132 and/or chloroquine, and it inhibits cytolytic activity of NK cells through reduction of both conjugate formation and CD69 expression. In PPARgamma-positive NK cells, PPAR-gamma activation by 15d-PGJ(2) and ciglitazone (a synthetic ligand) leads to reduction in both mRNA and protein levels of IFN-gamma. Overexpression of PPAR-gamma in PPAR-gamma-null NK cells reduces IFN-gamma gene expression. However, PPAR-gamma expression and activation has no effect on NK cell cytolytic activity. In addition, 15d-PGJ(2) but not ciglitazone reduces expression of CD69 in human NK cells, whereas CD44 expression is not affected. These results reveal novel pathways regulating NK cell biologic functions and provide a basis for the design of therapeutic agents that can regulate the function of NK cells within the innate immune response.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , PPAR gamma/metabolism , Prostaglandin D2/analogs & derivatives , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Interferon-gamma/metabolism , Killer Cells, Natural/drug effects , Ligands , Prostaglandin D2/metabolism , Prostaglandin D2/pharmacology , Thiazolidinediones/metabolism , Thiazolidinediones/pharmacology
5.
J Immunol ; 168(12): 6090-8, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12055219

ABSTRACT

Cytokine treatment of NK cells results in alterations in multiple cellular responses that include cytotoxicity, cytokine production, proliferation, and chemotaxis. To understand the molecular mechanisms underlying these responses, microarray analysis was performed and the resulting gene expression patterns were compared between unstimulated, IL-2, IL-2 plus IL-12, and IL-2 plus IL-18-stimulated NK92 cells. RNase protection assays and RT-PCR confirmed microarray predictions for changes in mRNA expression for nine genes involved in cell cycle progression, signal transduction, transcriptional activation, and chemotaxis. Multiprobe RNase protection assay also detected changes in the expression of CCR2 mRNA, a gene that was not imprinted on the microarray. We subsequently expanded our search for other chemokine receptor genes absent from the microarray and found an IL-2- and IL-12-dependent decrease in CXCR3 receptor mRNA expression in NK92 cells. A detailed analysis of CXCR3 expression in primary NK cells revealed that an IL-2 and an IL-12 together significantly decreased the CXCR3 receptor mRNA and receptor surface expression by 6 and 24 h of treatment, respectively. This decrease in receptor expression was associated with a significant reduction in chemotaxis in the presence of IFN-gamma-inducible protein-10. The decline in CXCR3 mRNA was due to transcriptional and posttranscriptional mechanisms as the addition of actinomycin D to IL-2- and IL-12-treated NK92 slightly altered the half-life of the CXCR3 mRNA. Collectively, these data suggest that IL-2 and IL-12 directly affect NK cell migratory ability by rapid and direct down-regulation of chemokine receptor mRNA expression.


Subject(s)
Chemokines, CXC/physiology , Down-Regulation/immunology , Interferon-gamma/pharmacology , Interleukin-12/physiology , Interleukin-2/physiology , Killer Cells, Natural/metabolism , Lymphocyte Activation , Receptors, Chemokine/antagonists & inhibitors , Cell Line , Cells, Cultured , Chemokine CXCL10 , Chemokines, CXC/metabolism , Chemotaxis, Leukocyte/immunology , Gene Expression Regulation/immunology , Humans , Interleukin-18/physiology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphocyte Activation/genetics , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Receptors, CXCR3 , Receptors, Chemokine/biosynthesis , Receptors, Chemokine/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...