Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Commun Biol ; 5(1): 1126, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284162

ABSTRACT

Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole, Anolis sagrei - a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes of A. sagrei.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome , Sex Chromosomes , Genomics , X Chromosome
2.
Mitochondrial DNA B Resour ; 7(6): 1180-1182, 2022.
Article in English | MEDLINE | ID: mdl-35783044

ABSTRACT

We present the complete mitochondrial genome of Chilabothrus argentum, which is 17,345 bp in length, has 22 transfer ribonucleic acids (tRNAs), 2 ribosomal subunits (rRNAs), 13 protein-coding genes, an origin of the light-strand replication (OL), and two control regions (CR1, CR2). A maximum likelihood phylogenetic estimate using nine other snake mitochondrial genomes yields agreement with previous investigations into the evolutionary relationships of snakes.

3.
Mol Phylogenet Evol ; 174: 107548, 2022 09.
Article in English | MEDLINE | ID: mdl-35690377

ABSTRACT

The genus Cyclura includes nine extant species and six subspecies of West Indian Rock Iguanas and is one of the most imperiled genera of squamate reptiles globally. An understanding of species diversity, evolutionary relationships, diversification, and historical biogeography in this group is crucial for implementing sound long-term conservation strategies. We collected DNA samples from 1 to 10 individuals per taxon from all Cyclura taxa (n = 70 ingroup individuals), focusing where possible on incorporating individuals from different populations of each species. We also collected 1-2 individuals from each of seven outgroup species of iguanas (Iguana delicatissima; five Ctenosaura species) and Anolis sagrei (n = 12 total outgroup individuals). We used targeted genomic sequence capture to isolate and to sequence 1,872 loci comprising of 687,308 base pairs (bp) from each of the 82 individuals from across the nuclear genome. We extracted mitochondrial reads and assembled and annotated mitogenomes for all Cyclura taxa plus outgroup species. We present well-supported phylogenomic gene tree/species tree analyses for all extant species of Cyclura using ASTRAL-III, SVDQuartets, and StarBEAST2 methods, and discuss the taxonomic, biogeographic, and conservation implications of these data. We find a most recent common ancestor of the genus 9.91 million years ago. The earliest divergence within Cyclura separates C. pinguis from a clade comprising all other Cyclura. Within the latter group, a clade comprising C. carinata from the southern Lucayan Islands and C. ricordii from Hispaniola is the sister taxon to a clade comprising the other Cyclura. Among the other Cyclura, the species C. cornuta and C. stejnegeri (from Hispaniola and Isla Mona) form the sister taxon to a clade of species from Jamaica (C. collei), Cuba and Cayman Islands (C. nubila and C. lewisi), and the eastern (C. rileyi) and western (C. cychlura) Lucayan Islands. Cyclura cychlura and C. rileyi form a clade whose sister taxa are C. nubila and C. lewisi. Cyclura collei is the sister taxon to these four species combined.


Subject(s)
Iguanas , Lizards , Animals , Cuba , Humans , Iguanas/genetics , Lizards/genetics , Phylogeny , Sequence Analysis, DNA , West Indies
4.
Proc Natl Acad Sci U S A ; 117(19): 10429-10434, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32341144

ABSTRACT

Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns.


Subject(s)
Lizards/anatomy & histology , Selection, Genetic/physiology , Animals , Biodiversity , Biological Evolution , Climate , Climate Change/statistics & numerical data , Cyclonic Storms/statistics & numerical data , Disasters/statistics & numerical data , Ecosystem , Islands , Phylogeny , Phylogeography , Population Dynamics/statistics & numerical data , Toes/anatomy & histology
5.
Zoo Biol ; 39(3): 205-213, 2020 May.
Article in English | MEDLINE | ID: mdl-32056297

ABSTRACT

The Puerto Rican Boa (Chilabothrus inornatus) was placed on the US Endangered Species List in 1970. Progress has been made since to clarify the recovery status of this species, though the design of a new recovery plan must include information regarding genetic variation within and among populations of this species. While measures of genetic diversity in wild populations of this species are finally becoming available, relative genetic diversity represented in ex situ populations is unknown, which hampers efforts to develop an ex situ species management plan. Here, we provide an analysis of genetic diversity in US public and private collections (zoos and breeders) using mitochondrial sequence data and five highly polymorphic nuclear microsatellite loci. We analyzed 50 boas from the US ex situ population and determined overall genetic diversity and relatedness among these individuals. We then compared these data to mitochondrial and microsatellite data obtained from 176 individuals from wild populations across the native range of the species. We found little inbreeding and a large amount of retained genetic diversity in the US ex situ population of C. inornatus relative to wild populations. Genetic diversity in the ex situ population is similar to that found in wild populations. Ours is only the second explicit attempt to characterize genetic diversity at the molecular level in ex situ populations of boid snakes. We anticipate that these results will inform current breeding strategies as well as offer additional information that will facilitate the continuation of ex situ conservation breeding or management in boas.


Subject(s)
Boidae/genetics , Genetic Variation , Animals , DNA, Mitochondrial/genetics , Endangered Species , Inbreeding , Microsatellite Repeats/genetics , Skin
6.
Mol Phylogenet Evol ; 146: 106754, 2020 05.
Article in English | MEDLINE | ID: mdl-32028030

ABSTRACT

Recognizing species-level diversity is important for studying evolutionary patterns across biological disciplines and is critical for conservation efforts. However, challenges remain in delimiting species-level diversity, especially in cryptic radiations where species are genetically divergent but show little morphological differentiation. Using multilocus molecular data, phylogenetic analyses, species delimitation analyses, and morphological data, we examine lineage diversification in a cryptic radiation of Riopa skinks in Myanmar. Four species of Riopa skinks are currently recognized from Myanmar based on morphological traits, but the boundaries between three of these species, R. anguina, R. lineolata, and R. popae, are not well-defined. We find high levels of genetic diversity within these three species. Our analyses suggest that they may comprise as many as 12 independently evolving lineages, highlighting the extent to which species diversity in the region is underestimated. However, quantitative trait data suggest that these lineages have not differentiated morphologically, possibly indicating that this cryptic radiation represents non-adaptive evolution, although additional data is needed to corroborate this.


Subject(s)
Lizards/classification , Animals , Bayes Theorem , Genetic Variation , Lizards/anatomy & histology , Lizards/genetics , Myanmar , Phylogeny , Phylogeography
7.
Mitochondrial DNA B Resour ; 4(2): 2479-2481, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-33365591

ABSTRACT

The Lesser Antillean iguana, Iguana delicatissima Laurenti 1768, is one of the most endangered vertebrate taxa in the West Indies. This species faces significant threats, including introgressive hybridization with the introduced congener Iguana iguana. We deploy a combination of off-target sequence capture obtained from Illumina® reads and targeted Sanger reads to assemble the mitochondrial genome of I. delicatissima. The mitogenome is 16,616 bp in length and is comprised of 13 protein-coding genes, two ribosomal subunits (rRNAs), 22 transfer RNAs, and a control region. Gene order is identical to that of congener I. iguana and other closely related taxa, absent of any tandem repeat regions. We show the phylogenetic utility of the mitogenome with a maximum-likelihood analysis, which yields a topology concordant with previous studies of iguanine taxa. We are hopeful that this genomic resource will be useful in further informing applied conservation and management for this critically endangered species.

8.
Evolution ; 70(8): 1882-95, 2016 08.
Article in English | MEDLINE | ID: mdl-27345593

ABSTRACT

Colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the Greater Antillean boas, includes both small (<90 cm) and large (4 m) species occurring on the Greater Antilles and Bahamas, with some islands supporting pairs or trios of body-size divergent species. These boas have been shown to comprise a monophyletic radiation arising from a Miocene dispersal event to the Greater Antilles, though it is not known whether co-occurrence of small and large species is a result of dispersal or in situ evolution. Here, we provide the first comprehensive species phylogeny for this clade combined with morphometric and ecological data to show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island- and species-specific factors.


Subject(s)
Biological Evolution , Body Size , Boidae/physiology , Life History Traits , Animals , West Indies
9.
Evolution ; 70(5): 1009-22, 2016 05.
Article in English | MEDLINE | ID: mdl-27074746

ABSTRACT

Urbanization is an increasingly important dimension of global change, and urban areas likely impose significant natural selection on the species that reside within them. Although many species of plants and animals can survive in urban areas, so far relatively little research has investigated whether such populations have adapted (in an evolutionary sense) to their newfound milieu. Even less of this work has taken place in tropical regions, many of which have experienced dramatic growth and intensification of urbanization in recent decades. In the present study, we focus on the neotropical lizard, Anolis cristatellus. We tested whether lizard ecology and morphology differ between urban and natural areas in three of the most populous municipalities on the island of Puerto Rico. We found that environmental conditions including temperature, humidity, and substrate availability differ dramatically between neighboring urban and natural areas. We also found that lizards in urban areas use artificial substrates a large proportion of the time, and that these substrates tend to be broader than substrates in natural forest. Finally, our morphological data showed that lizards in urban areas have longer limbs relative to their body size, as well as more subdigital scales called lamellae, when compared to lizards from nearby forested habitats. This shift in phenotype is exactly in the direction predicted based on habitat differences between our urban and natural study sites, combined with our results on how substrates are being used by lizards in these areas. Findings from a common-garden rearing experiment using individuals from one of our three pairs of populations provide evidence that trait differences between urban and natural sites may be genetically based. Taken together, our data suggest that anoles in urban areas are under significant differential natural selection and may be evolutionarily adapting to their human-modified environments.


Subject(s)
Cities , Lizards/genetics , Phenotype , Selection, Genetic , Animals , Ecosystem , Lizards/physiology
10.
Evolution ; 69(4): 1027-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25683068

ABSTRACT

In recent years, enormous effort and investment has been put into assembling the tree of life: a phylogenetic history for all species on Earth. Overwhelmingly, this progress toward building an ever increasingly complete phylogeny of living things has been accomplished through sophisticated analysis of molecular data. In the modern genomic age, molecular genetic data have become very easy and inexpensive to obtain for many species. However, some lineages are poorly represented in or absent from tissue collections, or are unavailable for molecular analysis for other reasons such as restrictive biological sample export laws. Other species went extinct recently and are only available in formalin museum preparations or perhaps even as subfossils. In this brief communication we present a new method for placing cryptic, recently extinct, or hypothesized taxa into an ultrametric phylogeny of extant taxa using continuous character data. This method is based on a relatively simple modification of an established maximum likelihood (ML) method for phylogeny inference from continuous traits. We show that the method works well on simulated trees and data. We then apply it to the case of placing the Culebra Island Giant Anole (Anolis roosevelti) into a phylogeny of Caribbean anoles. Anolis roosevelti is a "crown-giant" ecomorph anole hypothesized to have once been found throughout the Spanish, United States, and British Virgin Islands, but that has not been encountered or collected since the 1930s. Although this species is widely thought to be closely related to the Puerto Rican giant anole, A. cuvieri, our ML method actually places A. roosevelti in a different part of the tree and closely related to a clade of morphologically similar species. We are unable, however, to reject a phylogenetic position for A. roosevelti that places it as sister taxon to A. cuvieri; although close relationship with the remainder of Puerto Rican anole species is strongly rejected by our method.


Subject(s)
Biological Evolution , Lizards/classification , Models, Genetic , Phylogeny , Animals , Caribbean Region , Likelihood Functions
11.
12.
Mol Phylogenet Evol ; 68(3): 461-70, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23669009

ABSTRACT

The evolutionary and biogeographic history of West Indian boid snakes (Epicrates), a group of nine species and 14 subspecies, was once thought to be well understood; however, new research has indicated that we are missing a clear understanding of the evolutionary relationships of this group. Here, we present the first multilocus, species-tree based analyses of the evolutionary relationships, divergence times, and historical biogeography of this clade with data from 10 genes and 6256 bp. We find evidence for a single colonization of the Caribbean from mainland South America in the Oligocene or early Miocene, followed by a radiation throughout the Greater Antilles and Bahamas. These findings support the previous suggestion that Epicrates sensu lato Wagler is paraphyletic with respect to the anacondas (Eunectes Wagler), and hence we restrict Epicrates to the mainland clade and use the available name Chilabothrus Duméril and Bibron for the West Indian clade. Our results suggest some diversification occurred within island banks, though most species divergence events seem to have occurred in allopatry. We also find evidence for a remarkable diversification within the Bahamian archipelago suggesting that the recognition of another Bahamian endemic species C. strigilatus is warranted.


Subject(s)
Boidae/classification , Boidae/genetics , Phylogeny , Phylogeography , Animals , Bayes Theorem , Biodiversity , Evolution, Molecular , Molecular Sequence Data , West Indies
13.
PLoS One ; 8(5): e63899, 2013.
Article in English | MEDLINE | ID: mdl-23691110

ABSTRACT

The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas.


Subject(s)
Boidae , Conservation of Natural Resources , Endangered Species , Animals , Boidae/genetics , DNA, Mitochondrial/genetics , Microsatellite Repeats/genetics , Puerto Rico
14.
Evolution ; 67(4): 1011-25, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23550752

ABSTRACT

Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis-driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea.


Subject(s)
Climate , Evolution, Molecular , Fishes/genetics , Geological Phenomena , Animals , Ecosystem , Genetic Speciation , Genetic Variation , Phylogeny , Population/genetics
15.
Genetica ; 141(1-3): 119-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23504127

ABSTRACT

Genetic analysis has been promoted as a way to reconstruct recent historical dynamics ("historical demography") by screening for signatures of events, such as bottlenecks, that disrupt equilibrium patterns of variation. Such analyses might also identify "metapopulation" processes like extinction and recolonization or source-sink dynamics, but this potential remains largely unrealized. Here we use simulations to test the ability of two currently used strategies to distinguish between a set of interconnected subpopulations (demes) that have undergone bottlenecks or extinction and recolonization events (metapopulation dynamics) from a set of static demes. The first strategy, decomposed pairwise regression, provides a holistic test for heterogeneity among demes in their patterns of isolation-by-distance. This method suffered from a type II error rate of 59-100 %, depending on parameter conditions. The second strategy tests for deviations from mutation-drift equilibrium on a deme-by-deme basis to identify sites likely to have experienced recent bottlenecks or founder effects. Although bottleneck tests have good statistical power for single populations with recent population declines, their validity in structured populations has been called into question, and they have not been tested in a metapopulation context with immigration (or colonization) and population recovery. Our simulations of hypothetical metapopulations show that population recovery can rapidly eliminate the statistical signature of a bottleneck, and that moderate levels of gene flow can generate a false signal of recent population growth for demes in equilibrium. Although we did not cover all possible metapopulation scenarios, the performance of the tests was disappointing. Our results indicate that these methods might often fail to identify population bottlenecks and founder effects if population recovery and/or gene flow are influential demographic features of the study system.


Subject(s)
Founder Effect , Genetics, Population/methods , Models, Genetic , Animals , Gene Flow , Genetic Drift , Humans
16.
J Hered ; 102(6): 759-63, 2011.
Article in English | MEDLINE | ID: mdl-21868391

ABSTRACT

Until recently, facultative automictic parthenogenesis within the squamate reptiles exhibiting ZZ:ZW genetic sex determination has resulted in single reproductive events producing male (ZZ) or female (ZW) offspring. With the recent discovery of viable parthenogenetically produced female (WW) Boa constrictors, the existence of further parthenogenetic events resulting in WW females was questioned. Here, we provide genetic evidence for consecutive virgin births by a female Colombian rainbow boa (Epicrates maurus), resulting in the production of WW females likely through terminal fusion automixis. Samples were screened at 22 microsatellite loci with 12 amplifying unambiguous products. Of these, maternal heterozygosity was observed in 4, with the offspring differentially homozygous at each locus. This study documents the first record of parthenogenesis within the genus Epicrates, a second within the serpent lineage Boidae, and the third genetically confirmed case of consecutive virgin births of viable offspring within any vertebrate lineage. Unlike the recent record in Boa constrictors, the female described here was isolated from conspecifics from birth, demonstrating that males are not required to stimulate parthenogenetic reproduction in this species and possibly other Boas.


Subject(s)
Boidae/genetics , Parthenogenesis/genetics , Parturition/genetics , Reproduction/genetics , Sex Determination Processes/genetics , Animals , DNA Fingerprinting , Female , Heterozygote , Homozygote , Microsatellite Repeats , Sex Determination Analysis
17.
Evolution ; 61(9): 2253-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17767594

ABSTRACT

The origin of new species can be influenced by both deterministic and stochastic factors. Mate choice and natural selection may be important deterministic causes of speciation (as opposed to the essentially stochastic factors of geographic isolation and genetic drift). Theoretical models predict that speciation is more likely when mate choice depends on an ecologically important trait that is subject to divergent natural selection, although many authors have considered such mating/ecology pleiotropy, or "magic-traits" to be unlikely. However, phenotypic signals are important in both mate choice and ecological processes such as avoiding predation. In chemically defended species, it may be that the phenotypic characteristics influencing mate choice are the same signals being used to transmit a warning to potential predators, although few studies have demonstrated this in wild populations. We tested for assortative mating between two color morphs of the Strawberry Poison-Dart Frog, Dendrobates pumilio, a group with striking geographic variation in aposematic color patterns. We found that females significantly prefer individuals of their own morph under two different light treatments, indicating strong assortative mating based on multiple coloration cues that are also important ecological signals. This study provides a rare example of one phenotypic trait affecting both ecological viability and nonrandom mating, indicating that mating/ecology pleiotropy is plausible in wild populations, particularly for organisms that are aposematically colored and visually orienting.


Subject(s)
Adaptation, Biological , Anura , Genetic Speciation , Mating Preference, Animal , Skin Pigmentation , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...