Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 14(4): 16585-93, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26681004

ABSTRACT

Corn is a major crop and various herbicides are used to maximize its production, which include a dicamba-atrazine mixture. This has great advantages, but can also induce DNA damage. Genotoxic activity was assessed by comet assay following application of two concentrations of dicamba-atrazine: 1000-2000 and 2000-4000 ppm. Apical meristem leaf nuclei from 119 varieties of sweetcorn plants from Mexico and South America, and from five commercial sweetcorn hybrids were used. Each accession comprised two individuals per concentration and two controls. Significant genotoxic activity (P < 0.001) was observed following treatment with 1000-2000 and 2000-4000 ppm compared to the negative control. There was no difference in the genotoxic activity induced by both 1000-2000 and 2000-4000 ppm concentrations in plants from Mexico and South America (P > 0.05) except (P < 0.05) in the 2000-4000 ppm treated plants from Mexico and the 1000-2000 ppm treated plants from South America. Sweetcorn hybrids showed significant genetic damage (P < 0.01) at all concentrations compared to the negative controls. Thus, the dicamba-atrazine mixture caused genetic damage to corn plants, and it suggested that Mexican sweetcorn is more sensitive to dicamba-atrazine than the maize varieties from South America. Neither hybrid status nor the origin avoids DNA damage caused by Marvel. Thus, maize can be useful as a biomonitor of genetic damage induced by chemicals and to identify possible phenotypes based upon the amount of genetic damage induced by herbicides and selection of resistant genotypes.


Subject(s)
Atrazine/toxicity , DNA Damage , Dicamba/toxicity , Herbicides/toxicity , Zea mays/drug effects , Atrazine/adverse effects , Dicamba/adverse effects , Herbicides/adverse effects , Zea mays/genetics
2.
Appl Environ Microbiol ; 61(8): 3063-8, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7487039

ABSTRACT

A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.


Subject(s)
Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Toxins , Endotoxins/biosynthesis , Endotoxins/genetics , Genes, Bacterial , Animals , Bacillus thuringiensis/growth & development , Bacillus thuringiensis Toxins , Base Sequence , Chromosome Mapping , Chromosomes, Bacterial , DNA Primers/genetics , DNA, Bacterial/genetics , Genetic Vectors , Hemolysin Proteins , Molecular Sequence Data , Pest Control, Biological , Plasmids/genetics , Spodoptera , Transduction, Genetic , Type C Phospholipases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...