Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15355, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37717045

ABSTRACT

Corn nixtamalization generates a waste byproduct that requires diverse environmental preservation measures depending on the country. Such measures could include catalytic and advanced oxidation processes. This study aims to exploit the hemicellulose within the nejayote (32.5%) to create added value chemicals such as furfural using photocatalytic hydrolysis. In the present work, titania (TiO2) nanoparticles (NPs) were greenly synthesized using Ricinus Communis (RC), Moringa Oleifera (MO) or Bougainvillea Spectabilis (BS) plant extracts. Obtained nanoparticles were characterized using XRD, SEM, EDS, BET, XPS and UV-vis techniques. Furthermore, the photocatalytic performance of the obtained samples was evaluated in the furfural production from nejayote. Furfural yield reached 44% in 30 min using the BS synthesized material, which is 1.6 × the yield obtained by the material synthesized with MO extract (26.4% at 45 min) and 6 × the yield obtained by the material obtained with RC (7.2% at 90 min). Such results have not been reported before in the literature and could be the groundwork for novel waste treatments in the tortilla-making industry.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014684

ABSTRACT

The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added as co-solvent. To observe the effect of ILs, this solvent was compared with the organic solvent TriFluorAcetic acid (TFA). The nanofibers were characterized by transmission electron microscopy (TEM), X-ray, Fourier transform-infrared using attenuated total reflection (FTIR-ATR) spectroscopy, and thermogravimetric analysis (TGA). TEM showed different diameters (ranging from 35 to 76 nm) of cellulose nanofibers with ILs (CN ILs). According to X-ray diffraction, a notable decrease of the crystalline structure of cellulose treated with ILs was observed, while FTIR-ATR showed two bands that exhibit the physical interaction between cellulose nanofibers and ILs. TGA revealed that CN ILs exhibit enhanced thermal properties due to low or null cellulose crystallinity. CN ILs showed better characteristics in all analyses than nanofibers elaborated with TFA organic solvent. Therefore, CN ILs provide new alternatives for cellulose bagasse. Due to their small particle size, CN ILs could have several applications, including in food, pharmaceutical, textile, and material areas, among others.

3.
Polymers (Basel) ; 13(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641171

ABSTRACT

The aim of this work was to use glycerol (Gly) and sorbitol (Sor) as plasticizers with oxidized starch potato (OS) to produce biodegradable and environmentally friendly films, and to demonstrate the resulting physicochemical and functional viability without subtracting the organoleptic characteristics of the food. Analyses by water vapor permeability (WVP), attenuated total reflection Fourier transform infrared spectra (ATR-FTIR), scanning electron microscopy (SEM), tensile strength (TS), and transparency (UV) showed that the best film result was with 1.5 g of Gly and 2.0 g of Sor, conferred shine, elasticity 19.42 ± 6.20%, and mechanical support. The starch oxidized to 2.5%, contributing a greater transparency of 0.33 ± 0.12 and solubility of 78.90 ± 0.94%, as well as less permeability to water vapor 6.22 ± 0.38 gmm-2 d-1 kPa-1. The films obtained provide an alternative for use in food due to their organic compounds, excellent visual presentation, and barrier characteristics that maintain their integrity and, therefore, their functionality.

4.
Carbohydr Polym ; 192: 69-74, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29691036

ABSTRACT

In this study, cellulose of bagasse from Agave tequilana Weber var. azul was extracted to elaborate nanofibers by the electrospinning technique. Fiber characterization was performed using Transmission Electron Microscopy (TEM), x-ray, Fournier Transform-InfraRed (FT-IR) spectroscopy, and thermal analysis by Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA). Different diameters (ranging from 54.57 ±â€¯0.02 to 171 ±â€¯0.01 nm) of nanofibers were obtained. Cellulose nanofibers were analyzed by means of x-ray diffraction, where we observed a total loss of crystallinity in comparison with the cellulose, while FT-IR spectroscopy revealed that the hemicellulose and lignin present in the agave bagasse were removed. Thermal analysis showed that nanofibers exhibit enhanced thermal properties, and the zeta potential value (-32.5 mV) demonstrated moderate stability in the sample. In conclusion, the nanofibers obtained provide other alternatives-of-use for this agro-industrial residue and could have potential in various industrial applications, among these encapsulation of bioactive compounds and reinforcing material, to mention a few.

SELECTION OF CITATIONS
SEARCH DETAIL
...