Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1705: 464189, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37442068

ABSTRACT

This study reports the development of a Taylor Dispersion Analysis (TDA) method for the size characterization of Extracellular Vesicles (EVs), which are highly heterogeneous nanoscale cell-derived vesicles (30-1000 nm). Here, we showed that TDA, conducted in uncoated fused silica capillaries (50 µm i.d.) using a conventional Capillary Electrophoresis instrument, is able to provide absolute sizing (requiring no calibration) of bovine milk-derived EVs in a small sample volume (∼ 7 nL) and over their entire size range, even the smallest ones (< 70 nm) not accessible via other techniques that provide nanoparticle sizing in suspension. TDA size measurements were repeatable (RSD < 10%) and the average EV sizes were found in the range of 120-210 nm, in very good agreement with those measured with Nanoparticle Tracking Analysis, commonly used for EV characterization. TDA allowed quantitative estimation of EVs for concentrations ≥ 2 × 1011 EVs/mL. Furthermore, TDA was able to detect minor changes in EV size (i.e. by ∼25 nm upon interaction with specific anti-CD9 antibodies of ∼150 kDa), and to highlight the impact of extraction methods (i.e. milk pretreatment: freezing, acid precipitation or centrifugation; the type of size-exclusion chromatography column) and of fluorescent labeling (i.e. intravesicular or surface labeling) on the isolated EV population size. In parallel to EV sizing, TDA allowed to detect molecular contaminants (average sizes ∼1-13 nm) present within the sample, rendering this method a valuable tool to assess the quality and quantity of EV isolates.


Subject(s)
Capillaries , Extracellular Vesicles , Centrifugation , Quality Control
2.
Oncol Ther ; 11(1): 111-128, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36645622

ABSTRACT

INTRODUCTION: Liposomal irinotecan promotes controlled sustained release of irinotecan (CPT-11), therefore, we hypothesize that the therapeutic index (quantitative measurement of the relative efficacy/safety ratio of a drug) will be higher for liposomal than non-liposomal irinotecan. METHODS: We compared the therapeutic indexes of liposomal and non-liposomal irinotecan in mice bearing subcutaneous patient-derived xenograft (PDX) pancreatic tumors under dosing regimens approximating the clinical setting. Following preliminary drug sensitivity/antitumor activity analyses on three PDX tumor models, one model was selected for analyses of efficacy, biomarker, toxicology, pharmacokinetics in mice receiving liposomal irinotecan (2.5, 10, 50 mg/kg/week) or non-liposomal irinotecan (10, 25, 50 mg/kg/week). The maximum tolerated dose (MTD) for each treatment was 50 mg/kg/week. RESULTS: Using the selected IM-PAN-001 model at the MTD (both treatments, 50 mg/kg/week), antitumor activity, phospho-histone gamma-H2AX protein staining in cancer cell nuclei, histological tumor regression, and plasma levels of CPT-11 and its active metabolite SN-38 after 24 h were greater with liposomal than non-liposomal irinotecan, but tumor SN-38 levels were similar. At the lowest doses assessed, antitumor activity, histological tumor regression, and jejunum and bone marrow toxicity were similar. Based on these findings, liposomal and non-liposomal irinotecan had therapeutic indexes of 20 and 5, respectively. CONCLUSION: This non-clinical study showed a fourfold broader therapeutic index with liposomal than non-liposomal irinotecan in mice bearing IM-PAN-001 PDX pancreatic tumors, even at optimal dosing for the two drugs. These findings support the clinical benefit observed with liposomal irinotecan in patients with pancreatic cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...