Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835988

ABSTRACT

Large engineering structures made of various materials, including concrete (e.g., bridges, dams, buildings, and multilevel car parks), steel (e.g., power towers, ships, and wind turbines), or others, are often subjected to severe vibration, dynamic, and cyclic loads, which lead to crack initiation, crack growth, and finally structural failure. One of the effective techniques to increase the fatigue life of such structures is the use of reinforced materials. In the meantime, environmental factors, such as corrosion caused by corrosive environments, also affect the fatigue behavior of materials. Therefore, the main purpose of this paper is to study the influence of corrosive environment on the high-cycle fatigue (HCF) behavior of concrete reinforced by epoxy resin. For this purpose, five corrosive environments with different intensities, including fresh air, water: W, sea water: SW, acidic: AC, and alkaline: AL, were considered and the laboratory samples of conventional concrete (CC) and polymer concrete (PC) were immersed in them for one month. Next, axial fatigue tests were performed under compressive-compressive loading with a frequency of 3 Hz on cylindrical specimens. Moreover, to achieve reliable results, for each stress amplitude, the fatigue test was repeated three times, and the average number of cycles to failure was reported as the fatigue lifetime. Finally, the stress-life cycle (S-N) curves of different states were compared. The results showed that polymer concrete can resist well in corrosive environments and under cyclic loads compared to the conventional concrete, and in other words, the epoxy resin has performed its task well as a reinforcer. The results of fatigue tests show that the load bearing range of 10 tons by CC has reached about 18 tons for PC, which indicates an 80% increase in fatigue strength. Meanwhile, the static strength of samples in the vicinity of fresh air has only improved by 12%.

2.
Materials (Basel) ; 16(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37445007

ABSTRACT

In the present study, the experimental data of a shot-peened (TiB + TiC)/Ti-6Al-4V composite with two volume fractions of 5 and 8% for TiB + TiC reinforcements were used to develop a neural network based on the deep learning technique. In this regard, the distributions of hardness and residual stresses through the depth of the materials as the properties affected by shot peening (SP) treatment were modeled via the deep neural network. The values of the TiB + TiC content, Almen intensity, and depth from the surface were considered as the inputs, and the corresponding measured values of the residual stresses and hardness were regarded as the outputs. In addition, the surface coverage parameter was assumed to be constant in all samples, and only changes in the Almen intensity were considered as the SP process parameter. Using the presented deep neural network (DNN) model, the distributions of hardness and residual stress from the top surface to the core material were continuously evaluated for different combinations of input parameters, including the Almen intensity of the SP process and the volume fractions of the composite reinforcements.

3.
Polymers (Basel) ; 15(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37299277

ABSTRACT

The new generation presented for CNG fuel tanks of vehicles (type-IV) is made entirely of composites. The reason for that is to prevent the sudden explosion of metal tanks and to use the advantage of gas leakage in composite materials. Previous research has shown that type-IV CNG fuel tanks also have challenges such as variable wall thickness in outer shell parts, which are prone to failure under cyclic refueling loading. The optimization of this structure is on the agenda of many scholars and automakers, and in this regard, there are many standards for strength assessment. Despite reporting injury events, it seems that another parameter should be included in these calculations. In this article, the authors have attempted to numerically investigate the effect of drivers' refueling habits on the service life of type-IV CNG fuel tanks. For this purpose, a 34-L CNG tank made of glass/epoxy composite, polyethylene, and Al-7075T6, respectively, for the outer shell parts, liner, and flanges was considered as a case study. Moreover, a real-size measurement-based finite element model validated in the corresponding author's previous research was used. The loading history was applied as internal pressure according to the standard statement. Furthermore, considering different behavior of drivers for refueling, several loading histories with asymmetric details were applied. Eventually, the results obtained for different cases were compared to experimental data in symmetrical loading. The results showed that, based on the car's mileage, the driver's behavior in the refueling process can significantly reduce the service life of the tank (up to 78% of the predicted life based on the standard methodology).

4.
Materials (Basel) ; 16(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37176185

ABSTRACT

Kaplan turbines, as one of the well-known hydraulic turbines, are generally utilized worldwide for low-head and high-flow conditions. Any failure in each of the turbine components can result in long-term downtime and high repair costs. In a particular case, if other parts are damaged due to the impact of the broken blades (e.g., the main shaft of the turbine), the whole power plant may be shut down. On the other hand, further research on the primary causes of failures in turbines can help improve the present failure evaluation methodologies in power plants. Hence, the main objective of this paper is to present the major causes of Kaplan turbine failures to prevent excessive damage to the equipment and provide practical solutions for them. In general, turbines are mainly subjected to both Internal Object Damage (IOD) and Foreign Object Damage (FOD). Accordingly, this paper presents a state-of-the-art review of Kaplan turbine failures related to material and physical defects, deficiencies in design, deficits in manufacturing and assembly processes, corrosion failures, fatigue failure, cavitation wear, types of cavitation in hydro turbines, hydro-abrasive problems, and hydro-erosion problems. Eventually, the authors have attempted to discuss practical hints (e.g., nanostructured coatings) to prevent damages and improve the performance of Kaplan turbines.

5.
Materials (Basel) ; 15(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35744392

ABSTRACT

Reverse engineering is conducted based on the analysis of an already existing product. The results of such an analysis can be used to improve the functioning of the product or develop new organizational, economic, information technology, and other solutions that increase the efficiency of the entire business system, in particular 3D printed products. Therefore, the main aim of this research is to focus on evaluation of the load-bearing capacity of already existing 3D printed metals in order to see their suitability for the intended application and to obtain their relevant mechanical properties. To this end, 3D printed metallic bars with almost square cross-sections were acquired from an external company in China without any known processing parameters, apart from the assumption that specimens No. 1-3 are printed horizontally, and specimens No. 4-7 are printed vertically. Various experiments were conducted to study microstructural characteristics and mechanical properties of 3D printed metals. It was observed that specimens No. 1-6, were almost similar in hardness, while specimen No. 7 was reduced by about 4.5% due to the uneven surface. The average value of hardness for the specimens was found to be approximately 450 HV, whereas the load-extension graphs assessed prior point towards the conclusion that the specimens' fractured in a brittle status, is due to the lack of plastic deformation. For different specimens of the 3D printed materials, the main defects were identified, namely, lack of fusion and porosity are directly responsible for the cracks and layer delamination, prevalent in SLM printed metals. An extensive presence of cracks and layer delamination prove that the printing of these metallic bars was completed in a quick and inaccurate manner, which led to higher percentages of lack of fusion due to either low laser power, high scan speed, or the wrong scan strategy.

6.
Sensors (Basel) ; 22(3)2022 01 19.
Article in English | MEDLINE | ID: mdl-35161496

ABSTRACT

Bipolar Plates (BPPs) are the most crucial component of the Polymer Electrolyte Membrane (PEM) fuel cell system. To improve fuel cell stack performance and lifetime, corrosion resistance and Interfacial Contact Resistance (ICR) enhancement are two essential factors for metallic BPPs. One of the most effective methods to achieve this purpose is adding a thin solid film of conductive coating on the surfaces of these plates. In the present study, 410 Stainless Steel (SS) was selected as a metallic bipolar plate. The coating process was performed using titanium nitride and chromium nitride by the Cathodic Arc Evaporation (CAE) method. The main focus of this study was to select the best coating among CrN and TiN on the proposed alloy as a substrate of PEM fuel cells through the comparison technique with simultaneous consideration of corrosion resistance and ICR value. After verifying the TiN and CrN coating compound, the electrochemical assessment was conducted by the potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests. The results of PDP show that all coated samples have an increase in the polarization resistance (Rp) values (ranging from 410.2 to 690.6 Ω·cm2) compared to substrate 410 SS (230.1 Ω·cm2). Corrosion rate values for bare 410 SS, CrN, and TiN coatings were measured as 0.096, 0.032, and 0.060 mpy, respectively. Facilities for X-ray Diffraction (XRD), Scanning Electron Microscope (FE-SEM, TeScan-Mira III model and made in the Czech Republic), and Energy Dispersive X-ray Spectroscopy (EDXS) were utilized to perform phase, corrosion behavior, and microstructure analysis. Furthermore, ICR tests were performed on both coated and uncoated specimens. However, the ICR of the coated samples increased slightly compared to uncoated samples. Finally, according to corrosion performance results and ICR values, it can be concluded that the CrN layer is a suitable choice for deposition on 410 SS with the aim of being used in a BPP fuel cell system.

SELECTION OF CITATIONS
SEARCH DETAIL
...