Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 535: 1-12, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37890609

ABSTRACT

Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1ß (IL-1ß), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.


Subject(s)
Melanoma , Mesenchymal Stem Cells , Spinal Cord Injuries , Wharton Jelly , Animals , Rats , Cell Differentiation , Cells, Cultured , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Melanoma/metabolism , Models, Theoretical , Schwann Cells/metabolism , Spinal Cord Injuries/metabolism , Wharton Jelly/metabolism
2.
Int J Reprod Biomed ; 18(7): 551-560, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32803119

ABSTRACT

BACKGROUND: Apigenin is a plant-derived flavonoid with antioxidative and antiapoptotic effects. Bone marrow stromal cells (BMSCs) are a type of mesenchymal stem cells (MSCs) that may recover damaged ovaries. It seems that apigenin may promote the differentiation of MSCs. OBJECTIVE: The aim of this study was to investigate the effect of coadministration of apigenin and BMSCs on the function, structure, and apoptosis of the damaged ovaries after creating a chemotherapy model with cyclophosphamide in rat. MATERIALS AND METHODS: For chemotherapy induction and ovary destruction, cyclophosphamide was injected intraperitoneally to 40 female Wistar rats (weighing 180-200 gr, 10 wk old) for 14 days. Then, the rats were randomly divided into four groups (n = 10/each): control, apigenin, BMSCs and coadministration of apigenin and BMSCs. Injection of apigenin was performed intraperitoneally and BMSC transplantation was performed locally in the ovaries. The level of anti-mullerian hormone serum by ELISA kit, the number of oocytes by superovulation, the number of ovarian follicles in different stages by H&E staining, and the expression of ovarian Bcl-2 and Bax proteins by western blot were assessed after four wk. RESULTS: The results of serum anti-mullerian hormone level, number of oocytes and follicles, and Bcl-2/Bax expression ratio showed that coadministration of apigenin and BMSCs significantly recovered the ovarian function, structure, and apoptosis compared to the control, BMSC, and apigenin groups (p < 0.001). CONCLUSION: The results suggest that the effect of coadministration of apigenin and BMSCs is maybe more effective than the effect of their administrations individually on the recovery of damaged ovaries following the chemotherapy with cyclophosphamide in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...