Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Diabetes Metab Disord ; 22(2): 1551-1560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37975122

ABSTRACT

Purpose: This study aimed to investigate the effects of photobiomodulation (PBM) and conditioned medium (CM) derived from human adipose-derived stem cells (h-ASCs), both individually and in combination, on the maturation stage of an ischemic infected delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. Methods: The study involved the extraction of h-ASCs from donated fat, assessment of their immunophenotypic markers, cell culture, and extraction and concentration of CM from cultured 1 × 10^6 h-ASCs. TIDM was induced in 24 male adult rats, divided into four groups: control, CM group, PBM group (80 Hz, 0.2 J/cm2, 890 nm), and rats receiving both CM and PBM. Clinical and laboratory evaluations were conducted on days 4, 8, and 16, and euthanasia was performed using CO2 on day 16. Tensiometrical and stereological examinations were carried out using two wound samples from each rat. Results: Across all evaluated factors, including wound closure ratio, microbiological, tensiometrical, and stereological parameters, similar patterns were observed. The outcomes of CM + PBM, PBM, and CM treatments were significantly superior in all evaluated parameters compared to the control group (p = 0.000 for all). Both PBM and CM + PBM treatments showed better tensiometrical and stereological results than CM alone (almost all, p = 0.000), and CM + PBM outperformed PBM alone in almost all aspects (p = 0.000). Microbiologically, both CM + PBM and PBM exhibited fewer colony-forming units (CFU) than CM alone (both, p = 0.000). Conclusion: PBM, CM, and CM + PBM interventions substantially enhanced the maturation stage of the wound healing process in IIDHWM of TIDM rats by mitigating the inflammatory response and reducing CFU count. Moreover, these treatments promoted new tissue formation in the wound bed and improved wound strength. Notably, the combined effects of CM + PBM surpassed the individual effects of CM and PBM. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-023-01285-3.

2.
J Lasers Med Sci ; 14: e45, 2023.
Article in English | MEDLINE | ID: mdl-38028880

ABSTRACT

Introduction: In the current study, the effects of photobiomodulation (PBM) treatments were examined based on biomechanical and histological criteria and mRNA levels of catalase (CAT), superoxide dismutase (SOD), and NADPH oxidase (NOX) 1 and 4 in a postponed, ischemic, and infected wound repair model (DIIWHM) in rats with type 2 diabetes (DM2) during the inflammation (day 4) and proliferation (day 8) stages. Methods: To study ischemic wound repair in a diabetic rat model (DIIWHM), 24 rats with type-2 diabetes were randomly divided into four groups and infected with methicillin-resistant Staphylococcus aureus (MRSA). The control groups consisted of CG4 (control group on day 4) and CG8 (control group on day 8), while the PBM groups comprised PBM4 (PBM treatment group on day 4) and PBM8 (PBM treatment group on day 8). These group assignments allowed for comparisons between the control groups and the PBM-treated groups at their respective time points during the study. Results: On days 4 and 8 of wound restoration, the PBM4 and PBM8 groups showed substantially modulated inflammatory responses and improved formation of fibroblast tissue compared with the CG groups (P<0.05). Concurrently, the effects of PBM8 were significantly superior to those of PBM4 (P<0.05). The antioxidant results on days 4 and 8 revealed substantial increases in CAT and SOD in the PBM groups compared with the CGs (P<0.05). Substantial decreases were observed in the antioxidant agents NOX1 and NOX4 of the PBM4 and PBM8 groups compared with both CGgroups (P<0.05). Conclusion: PBM treatments significantly sped up the inflammatory and proliferating processes in a DHIIWM in DM2 animals by modifying the inflammatory reaction and boosting fibroblast proliferation. Overall, the current findings indicated substantially better results in the PBM groups than in the CG groups.

3.
Lasers Med Sci ; 38(1): 129, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243832

ABSTRACT

Diabetic wounds are categorized by chronic inflammation, leading to the development of diabetic foot ulcers, which cause amputation and death. Herewith, we examined the effect of photobiomodulation (PBM) plus allogeneic diabetic adipose tissue-derived stem cells (ad-ADS) on stereological parameters and expression levels of interleukin (IL)-1ß and microRNA (miRNA)-146a in the inflammatory (day 4) and proliferation (day 8) stages of wound healing in an ischemic infected (with 2×107 colony-forming units of methicillin-resistant Staphylococcus aureus) delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. There were five groups of rats: group 1 control (C); group 2 (CELL) in which rat wounds received 1×106 ad-ADS; group 3 (CL) in which rat wounds received the ad-ADS and were subsequently exposed to PBM(890 nm, 80 Hz, 3.5 J/cm2, in vivo); group 4 (CP) in which the ad-ADS preconditioned by the PBM(630 nm + 810 nm, 0.05 W, 1.2 J/cm2, 3 times) were implanted into rat wounds; group 5 (CLP) in which the PBM preconditioned ad-ADS were implanted into rat wounds, which were then exposed to PBM. On both days, significantly better histological results were seen in all experimental groups except control. Significantly better histological results were observed in the ad-ADS plus PBM treatment correlated to the ad-ADS alone group (p<0.05). Overall, PBM preconditioned ad-ADS followed by PBM of the wound showed the most significant improvement in histological measures correlated to the other experimental groups (p<0.05). On days 4 and 8, IL-1 ß levels of all experimental groups were lower than the control group; however, on day 8, only the CLP group was different (p<0.01). On day 4, miR-146a expression levels were substantially greater in the CLP and CELL groups correlated to the other groups, on day 8 miR-146a in all treatment groups was upper than C (p<0.01). ad-ADS plus PBM, ad-ADS, and PBM all improved the inflammatory phase of wound healing in an IIDHWM in TIDM1 rats by reducing inflammatory cells (neutrophils, macrophages) and IL-1ß, and increasing miRNA-146a. The ad-ADS+PBM combination was better than either ad-ADS or PBM alone, because of the higher proliferative and anti-inflammatory effects of the PBM+ad-ADS regimen.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Methicillin-Resistant Staphylococcus aureus , MicroRNAs , Rats , Animals , Diabetes Mellitus, Experimental/pathology , Rats, Wistar , Wound Healing , Stem Cells/pathology , Inflammation/radiotherapy , Low-Level Light Therapy/methods , MicroRNAs/genetics
4.
Photochem Photobiol Sci ; 22(8): 1791-1807, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37039961

ABSTRACT

Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared  to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR  treatment  over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control  group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.


Subject(s)
Curcumin , Diabetes Mellitus, Experimental , Low-Level Light Therapy , Rats , Animals , Wound Healing , Rats, Wistar , Curcumin/pharmacology , Magnetic Iron Oxide Nanoparticles
5.
Arch Dermatol Res ; 315(6): 1717-1734, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36808225

ABSTRACT

We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Rats , Humans , Animals , Vascular Endothelial Growth Factor A/genetics , Diabetes Mellitus, Experimental/metabolism , Chemokine CXCL12 , Gene Expression , Inflammation , Stem Cells/metabolism
6.
Lasers Med Sci ; 37(8): 3297-3308, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36006574

ABSTRACT

The single and associated impressions of photobiomodulation (PBM) and adipose-derived stem cells (ADS) on stereological parameters (SP), and gene expression (GE) of some antioxidant and oxidative stressors of repairing injured skin at inflammation and proliferation steps (days 4 and 8) of a delayed healing, ischemic, and infected wound model (DHIIWM) were examined in type one diabetic (DM1) rats. DM1 was induced by administration of streptozotocin (40 mg/kg) in 48 rats. The DHIIWM was infected by methicillin-resistant Staphylococcus aureus (MRSA). The study comprised 4 groups (each, n = 6): Group 1 was the control group (CG). Group 2 received allograft human (h) ADSs transplanted into the wound. In group 3, PBM (890 nm, 80 Hz, 0.2 J/cm2) was emitted, and in group 4, a combination of PBM+ADS was used. At both studied time points, PBM+ADS, PBM, and ADS significantly decreased inflammatory cell count (p < 0.05) and increased granulation tissue formation compared to CG (p < 0.05). Similarly, there were lower inflammatory cells, as well as higher granulation tissue in the PBM+ADS compared to those of alone PBM and ADS (all, p < 0.001). At both studied time points, the GE of catalase (CAT) and superoxide dismutase (SOD) was remarkably higher in all treatment groups than in CG (p < 0.05). Concomitantly, the outcomes of the PBM+ADS group were higher than the single effects of PBM and ADS (p < 0.05). On day 8, the GE of NADPH oxidase (NOX) 1 and NOX4 was substantially less in the PBM+ADS than in the other groups (p < 0.05). PBM+ADS, PBM, and ADS treatments significantly accelerated the inflammatory and proliferative stages of wound healing in a DIIWHM with MRSA in DM1 rats by decreasing the inflammatory response, and NOX1 and 4 as well; and also increasing granulation tissue formation and SOD and CAT. The associated treatment of PBM+ADS was more effective than the individual impacts of alone PBM and ADS because of the additive anti-inflammatory and proliferative effects of PBM plus ADS treatments.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Stem Cell Transplantation , Allografts , Animals , Antioxidants , Catalase , Diabetes Mellitus, Experimental/radiotherapy , Humans , Ischemia , Methicillin-Resistant Staphylococcus aureus , NADPH Oxidases , Oxidative Stress , Rats , Rats, Wistar , Stem Cells , Streptozocin/adverse effects , Superoxide Dismutase
7.
J Lasers Med Sci ; 13: e10, 2022.
Article in English | MEDLINE | ID: mdl-35996492

ABSTRACT

Introduction: Long bone segmental deficiencies are challenging complications to treat. Hereby, the effects of the scaffold derived from the human demineralized bone matrix (hDBMS) plus human adipose stem cells (hADSs) plus photobiomodulation (PBM) (in vitro and or in vivo) on the catabolic step of femoral bone repair in rats with critical size femoral defects (CDFDs) were evaluated with stereology and high stress load (HSL) assessment methods. Methods: hADSs were exposed to PBM in vitro; then, the mixed influences of hDBMS+hADS+PBM on CSFDs were evaluated. CSFDs were made on both femurs; then hDBMSs were engrafted into both CSFDs of all rats. There were 6 groups (G)s: G1 was the control; in G2 (hADS), hADSs only were engrafted into hDBMS of CSFD; in G3 (PBM) only PBM therapy for CSFD was provided; in G4 (hADS+PBM in vivo), seeded hADSs on hDBMS of CSFDs were radiated with a laser in vivo; in G5 (hADSs+PBM under in vitro condition), hADSs in a culture system were radiated with a laser, then transferred on hDBMS of CSFDs; and in G6 (hADS+PBM in conditions of in vivo and in vitro), laser-exposed hADSs were transplanted on hDBMS of CSFDs, and then CSFDs were exposed to a laser in vivo. Results: Groups 4, 5, and 6 meaningfully improved HSLs of CSFD in comparison with groups 3, 1, and 2 (all, P=0.001). HSL of G5 was significantly more than G4 and G6 (both, P=0.000). Gs 6 and 4 significantly increased new bone volumes of CSFD compared to Gs 2 (all, P=0.000) and 1 (P=0.001 & P=0.003 respectively). HSL of G 1 was significantly lower than G5 (P=0.026). Conclusion: HSLs of CSFD in rats that received treatments of hDBMS plus hADS plus PBM were significantly higher than treatments with hADS and PBM alone and control groups.

8.
Lasers Med Sci ; 37(5): 2457-2470, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35067818

ABSTRACT

We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.


Subject(s)
Bone and Bones , Core Binding Factor Alpha 1 Subunit , Low-Level Light Therapy , Stem Cells , Adipose Tissue/cytology , Animals , Bone Morphogenetic Protein 4 , Bone and Bones/injuries , Chemokine CXCL12 , Core Binding Factor Alpha 1 Subunit/genetics , Gene Expression , Humans , RNA, Messenger , Rats
9.
Lasers Med Sci ; 37(1): 403-415, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33738614

ABSTRACT

The combined and individual influences of photobiomodulation therapy (PBMT) and arginine on wound strength, stereological parameters, and gene expressions of some related growth factors in ischemic and delayed healing wounds in rats were analyzed. We divided 108 rats into six groups: control, lower energy density (LOW)-PBMT, 2% arginine ointment (Arg 2%), LOW-PBMT + Arg 2%, high energy density (HIGH)-PBMT, and HIGH-PBMT + Arg 2%. First, we generated an ischemic and delayed healing wound model in each rat. We examined wound strength, stereological parameters, and gene expressions of basic fibroblast growth factor (bFGF), vascular endothelial growth factor A (VEGF-A), and stromal cell-derived factor 1 (SDF-1) by quantitative real-time polymerase chain reaction (qRT-PCR). PBMT alone and PBMT + Arg 2% considerably increased wound strength compared to the control and Arg 2% groups during the inflammatory and proliferative steps of wound healing (p < 0.05). In these steps, PBMT alone significantly induced an anti-inflammatory effect and increased fibroblast counts; Arg 2% alone induced an inflammatory response (p < 0.05). Concurrently, PBMT and PBMT + Arg 2% significantly increased keratinocyte counts and volume of the new dermis (p < 0.05). At the remodeling step, the Arg 2% groups had significantly better wound strength than the other groups (p < 0.05). In this step, PBMT and PBMT + Arg 2% significantly decreased inflammation, and increased fibroblast counts, vascular length, and the volume of new epidermis and dermis compared to the control and Arg 2% groups (p < 0.05). In all cases of gene analysis, there were statistically better results in the PBMT and PBMT + Arg 2% groups compared with the Arg 2% and control groups (p < 0.05). The anti-inflammatory and repairing effects of PBMT on an ischemic and delayed healing wound model in rats were shown by significant improvements in wound strength, stereological parameters, and gene expressions of bFGF, VEGF-A, and SDF-1α.


Subject(s)
Low-Level Light Therapy , Animals , Arginine , Disease Models, Animal , Rats , Vascular Endothelial Growth Factor A/genetics , Wound Healing
10.
Lasers Med Sci ; 37(3): 1593-1604, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34476655

ABSTRACT

Herein, we report the influence of administering different protocols of preconditioned diabetic adipose-derived mesenchymal stem cells (ADSs) with photobiomodulation in vitro, and photobiomodulation in vivo on the number of mast cells (MCs), their degranulation, and wound strength in the maturation step of a Methicillin-resistant Staphylococcus aureus (MRSA)-infectious wound model in rats with type one diabetes. An MRSA-infectious wound model was generated on diabetic animals, and they were arbitrarily assigned into five groups (G). G1 were control rats. In G2, diabetic ADS were engrafted into the wounds. In G3, diabetic ADS were engrafted into the wound, and the wound was exposed to photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) in vivo. In G4, preconditioned diabetic ADS with photobiomodulation (630 and 810 nm; each 3 times with 1.2 J/cm2) in vitro were engrafted into the wound. In G5, preconditioned diabetic ADS with photobiomodulation were engrafted into the wound, and the wound was exposed to photobiomodulation in vivo. The results showed that, the maximum force in all treatment groups was remarkably greater compared to the control group (all, p = 0.000). Maximum force in G4 and G5 were superior than that other treated groups (both p = 0.000). Moreover, G3, G4, and G5 showed remarkable decreases in completely released MC granules and total numbers of MC compared to G1 and G2 (all, p = 0.000). We concluded that diabetic rats in group 5 showed significantly better results in terms of accelerated wound healing and MC count of an ischemic infected delayed healing wound model.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Methicillin-Resistant Staphylococcus aureus , Animals , Low-Level Light Therapy/methods , Mast Cells , Rats , Rats, Wistar , Stem Cells
11.
J Lasers Med Sci ; 12: e40, 2021.
Article in English | MEDLINE | ID: mdl-34733763

ABSTRACT

Introduction: Herein, the individual and combined effects of photobiomodulation (PBM) and arginine (ARG) on the wound healing course of an experimental model of a slow healing wound (ulcer) in rats were assessed. Methods: A total of 108 male rats were divided into 6 groups: control; lower energy density (low)-PBM; arginine ointment (ARG); low-PBM+ARG; high energy density (high)-PBM; and high-PBM+ARG. In each rat, one ischemic wound in the center of a bipedicle flap and one non-ischemic wound out of the flap were created. Both wounds were treated in the experimental groups. Microbial growth, wound area, and wound strength were assessed on days 0, 5, 10, 15, and 20 after wound infliction. Results: All non-ischemic wounds closed before day 15. High-PBM+ARG and ARG significantly increased wound closure rates compared to the control group (LSD test, P = 0.000, and P = 0.001, respectively) on day 10. All slow healing wounds were open on day 15 but closed completely before day 20. Low-PBM+ARG and high-PBM significantly increased wound strength (stress high load, SHL) on day 10 compared to the control group (LSD test, P = 0.001, and P = 0.000, respectively). ARG, high-PBM, and low-PBM+ARG significantly increased wound closure rates on day 15 relative to the control group (LSD test, P = 0.000, P = 0.000, and P = 0.001, respectively). Conclusion: High-PBM and low-PBM+ARG have biostimulatory and antibacterial effects on slow-healing wounds, which were shown by significant increases in wound closure rates, wound strength, and inhibition of Staphylococcus aureus growth.

12.
J Lasers Med Sci ; 12: e9, 2021.
Article in English | MEDLINE | ID: mdl-34084735

ABSTRACT

Introduction: Abnormal wound repair is a cause for considerable expense, as well as patient morbidity and mortality. Here, we investigated the combined impact of photobiomodulation (PBM) and curcumin on a rat experimental model of an acute skin wound. Methods: A round full-thickness wound was created on the back of each rat. We divided the rats into the following four groups. Group one was the control group. Group two received pulse wave (PW) PBM at a dose of 890 nm, 80 Hz, and 0.2 J/cm2. Group 3 received 40 mg/kg curcumin by gastric gavage and group 4 were treated with PWPBM + curcumin. We measured the wound area on days 4, 7, and 15, and performed microbiological and tensiometric examinations. Results: There was markedly improved wound contraction in the curcumin (7.5 ± 0.57; P =0.000), PBM (8.5 ± 1.2; P =0.000), and PBM + curcumin (14.5 ± 4.3; P =0.002) groups relative to the control group (25 ± 6). PBM (100 ± 7.3; P =0.005), and PBM + curcumin (98 ± 6; P =0.005) groups meaningfully improved tensile strength relative to the control group (61 ± 8.2). On day 15, the PBM (10 ± 5; P =0.000), curcumin (14 ± 4.5, P =0.000), and PBM + curcumin (27.3 ± 8.3; P =0.000) groups meaningfully decreased microbial flora relative to the control group (95 ± 6). Conclusion: We concluded that the PBM and PBM + curcumin groups meaningfully accelerated wound healing of the acute skin wound in the rats. The results of the PBM group were statistically more effective than the curcumin alone and PBM + curcumin-treated groups.

13.
Stem Cell Res Ther ; 11(1): 494, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239072

ABSTRACT

BACKGROUND: Diabetic foot ulcer is the most costly and complex challenge for patients with diabetes. We hereby assessed the effectiveness of different preconditioned adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation protocols on treating an infected ischemic wound in type 1 diabetic rats. METHODS: There were five groups of rats: (1) control, (2) control AD-MSCs [diabetic AD-MSCs were transplanted (grafted) into the wound bed], (3) AD-MSC + photobiomodulation in vivo (diabetic AD-MSCs were grafted into the wound, followed by in vivo PBM treatment), (4) AD-MSCs + photobiomodulation in vitro, and (5) AD-MSCs + photobiomodulation in vitro + in vivo. RESULTS: Diabetic AD-MSCs preconditioned with photobiomodulation had significantly risen cell function compared to diabetic AD-MSC. Groups 3 and 5 had significantly decreased microbial flora correlated to groups 1 and 2 (all, p = 0.000). Groups 2, 3, 4, and 5 had significantly improved wound closure rate (0.4, 0.4, 0.4, and 0.8, respectively) compared to group 1 (0.2). Groups 2-5 had significantly increased wound strength compared to group 1 (all p = 0.000). In most cases, group 5 had significantly better results than groups 2, 3, and 4. CONCLUSIONS: Preconditioning diabetic AD-MSCs with photobiomodulation in vitro plus photobiomodulation in vivo significantly hastened healing in the diabetic rat model of an ischemic infected delayed healing wound.


Subject(s)
Diabetes Mellitus, Experimental , Low-Level Light Therapy , Mesenchymal Stem Cell Transplantation , Wound Healing , Animals , Diabetes Mellitus, Experimental/therapy , Humans , Rats , Rats, Wistar , Stem Cells
14.
Lasers Med Sci ; 34(4): 779-791, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30393833

ABSTRACT

Here, we examined the combined effect of pulse wave photobiomodulation (PBM) with curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles (curcumin), in an experimental mouse model of acute skin wound. Thirty male adult mice were randomly allocated into 5 groups. Group 1 was served as the control group. Group 2 was a placebo and received distilled water, as a carrier of curcumin. Group 3 received laser (890 nm, 80 Hz, 0.2 J/cm2). Group 4 received curcumin by taking four injections around the wound. Group 5 received laser + curcumin. One full-thickness excisional round wound was made on the back of all the mice. On days 0, 4, 7, and 14, bacterial flora, wound surface area, and tensile strength were examined and microbiological examinations were performed. In case of wound closure, the two-way ANOVA shows that wound surface area of entire groups decreased progressively. However, the decrease in laser + curcumin and laser groups, and especially data from laser + curcumin group were statistically more significant, in comparison with the other groups (F statistics = 2.28, sig = 0.019). In terms of microbiology, the two-way ANOVA showed that laser, and laser + curcumin groups have statistically a lower bacterial count than the curcumin, control, and carrier groups (F statistics = 35, sig = 0 = 000). Finally, the one-way ANOVA showed that laser + curcumin, curcumin, and curcumin significantly increased wound strength, compared to the control and carrier groups. Furthermore, laser + curcumin significantly increased wound strength, compared to the control, laser, and curcumin groups (LSD test, p = 0.003, p = 0.002, and p = 0.005, respectively). In conclusion, curcumin nanoparticles, pulse wave laser, and pulse wave laser + curcumin nanoparticles accelerate wound healing, through a significant increase in wound closure rate, as well as wound strength, and a significant decrease in Staphylococcus aureus counts. Furthermore, the statistical analysis of our data suggests that the combined treatment of pulse wave laser + curcumin nanoparticles enhances the wound closure rate, and wound strength, compared to the laser and curcumin nanoparticles alone.


Subject(s)
Curcumin/pharmacology , Iron/pharmacology , Low-Level Light Therapy , Wound Healing/drug effects , Analysis of Variance , Animals , Bacteria/drug effects , Bacteria/growth & development , Body Weight/drug effects , Colony Count, Microbial , Combined Modality Therapy , Disease Models, Animal , Male , Mice , Microbial Sensitivity Tests , Particle Size , Tensile Strength , Tissue Distribution/drug effects
15.
Photomed Laser Surg ; 36(8): 415-423, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30004319

ABSTRACT

BACKGROUND: A lack of effective treatments still exists for patients suffering from diabetes mellitus. Photobiomodulation is proved as a beneficial therapeutic modality for wounds. OBJECTIVE: The aim of this study is to examine the effect of degranulation of mast cells and total number of mast cells in the remodeling step of an ischemic model of wound healing under the influence of photobiomodulation and conditioned medium (CM) from human bone marrow-derived mesenchymal stem cells (hBM-MSCs-CM), or CM, administered alone and or in combination. MATERIALS AND METHODS: Initially, type 1 diabetes mellitus was induced in 72 male adult rats. Then, after a month, one incision was made on the back of each rat. Subsequently, the rats were divided into four groups. The first group was considered as the control (placebo) group, the second group received CM, the third group received photobiomodulation, and the fourth group received photobiomodulation+CM. On days 4, 7, and 15, samples were extracted from the wound for histological and tensiometric examinations. The total number of mast cells, including the three types of mast cells, was counted by the stereological methods. The tensiometric properties of the repairing tissue were examined. RESULTS: The administration of photobiomodulation and CM, alone or in combination, significantly increased the tensiometric properties within the healing wounds. Histologically, photobiomodulation+CM, CM, and photobiomodulation groups showed a significant decrease in the three types of mast cells and in the total number of mast cells compared with the control group on day 15. CONCLUSIONS: We conclude that photobiomodulation and CM alone and or in combination significantly accelerated the healing process in a rat with a diabetic and ischemic wound, and significantly decreased the total number of mast cells and degranulation of mast cells. We suggest that the increased number of type 2 mast cells in the control group adversely affected the tensiometric properties of wounds in this group.


Subject(s)
Cell Degranulation/radiation effects , Low-Level Light Therapy , Mast Cells/radiation effects , Skin/radiation effects , Wound Healing/radiation effects , Wounds and Injuries/radiotherapy , Animals , Bone Marrow Transplantation , Cell Count , Culture Media, Conditioned , Diabetes Mellitus, Experimental , Ischemia/immunology , Ischemia/radiotherapy , Male , Mast Cells/physiology , Mesenchymal Stem Cell Transplantation , Rats , Rats, Wistar , Skin/immunology , Wound Healing/immunology , Wounds and Injuries/immunology
16.
Photomed Laser Surg ; 36(8): 406-414, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29851368

ABSTRACT

OBJECTIVE: We examined the effects of photobiomodulation (PBM) on stereological parameters, and gene expression of Runt-related transcription factor 2 (RUNX2), osteocalcin, and receptor activator of nuclear factor kappa-B ligand (RANKL) in repairing tissue of tibial bone defect in streptozotocin (STZ)-induced type 1 diabetes mellitus (TIDM) in rats during catabolic response of fracture healing. BACKGROUND DATA: There were conflicting results regarding the efficacy of PBM on bone healing process in healthy and diabetic animals. MATERIALS AND METHODS: Forty-eight rats have been distributed into four groups: group 1 (healthy control, no TIDM and no PBM), group 2 (healthy test, no TIDM and PBM), group 3 (diabetic control, TIDM and no PBM), and group 4 (diabetic test, no TIDM and PBM). TIDM was induced in the groups 3 and 4. A partial bone defect in tibia was made in all groups. The bone defects of groups second and fourth were irradiated by a laser (890 nm, 80 Hz, 1.5 J/cm2). Thirty days after the surgery, all bone defects were extracted and were submitted to stereological examination and real-time polymerase chain reaction (RT-PCR). RESULTS: PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats. CONCLUSIONS: PBM significantly increased many stereological parameters of bone repair in an STZ-induced TIDM during catabolic response of fracture healing. Further RT-PCR test demonstrated that bone repair was modulated in diabetic rats during catabolic response of fracture healing by significant increase in mRNA expression of RUNX2, and osteocalcin compared to healthy control rats. PBM also decreased osteocalcin mRNA expression in TIDM rats.


Subject(s)
Fracture Healing/radiation effects , Low-Level Light Therapy , Osteotomy , Tibia/radiation effects , Tibial Fractures/radiotherapy , Animals , Core Binding Factor Alpha 1 Subunit/biosynthesis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1/complications , Disease Models, Animal , Female , Fracture Healing/physiology , Osteocalcin/biosynthesis , RANK Ligand/biosynthesis , Rats , Rats, Wistar , Tibia/physiopathology , Tibial Fractures/complications , Tibial Fractures/physiopathology , Tibial Fractures/therapy
17.
J Photochem Photobiol B ; 182: 77-84, 2018 May.
Article in English | MEDLINE | ID: mdl-29627514

ABSTRACT

Osteoporotic bone marrow mesenchymal stem cells (BMMSCs) are involved in the pathogenesis of osteoporosis (OP). Photobiomodulation (PBM) has positive effects on healthy BMMSCs. The goal of current experiment was to evaluate the combined influence of photobiomodulation PBM and alendronate (ALN) incubation on ovariectomized induced osteoporosis(OVX)- BMMSC viability in vitro. 15 female adult Wistar rats were distributed into the 2 groups: (1) 3 healthy (sham)control rats, (2) 12 OVX- rats. All OVX rats underwent ovariectomy. After 3.5 months sham and OVX rats were euthanized and their MSC harvested and cultured in a complete osteogenic incubation medium (OM). As the next step, in sham and OVX groups flowcytometry and osteogenic differentiation assays were performed. OVX- rats were divided into (2) OVX-control, (3) OVX- PBM (HeNe laser, 623.8 nm, 1.2 J/cm2, one time), (4) OVX-ALN (10-8 M, three times incubations), and (5) OVX-PBM + ALN, Finally BMMSC viability of all five groups were evaluated using MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) assay. Based on our observations, PBM significantly increased optical density of OVX-BMMSCs (2.15 ±â€¯0.11) compared to control -OVX-BMMSCs (1.55 ±â€¯0.10) and healthy -BMMSCs (1.65 ±â€¯0.10)(LSD test, both p < 0.05). Further, we found that both ALN, and ALN + PBM significantly increased optical densities of OVX-BMMSCs (24 h:2.40 ±â€¯0.03;48 h:2.06 ±â€¯0.00[ALN],both p < 0.01) and 1.88 ±â€¯0.05[ALN + PBM], p < 0.05 compared to control -OVX-BMMSCs (24 h: 1.46 ±â€¯0.01; 48 h: 1.83 ±â€¯0.00 and 1.57 ±â€¯0.08). It was concluded that PBM significantly increased cell viability of OVX-BMMSCs compared to control -OVX-BMMSCs and healthy -BMMSCs.


Subject(s)
Alendronate/pharmacology , Bone Marrow Cells/drug effects , Cell Survival , Lasers , Mesenchymal Stem Cells , Osteoporosis , Animals , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Female , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/radiation effects , Osteoporosis/drug therapy , Rats , Rats, Wistar
18.
Prog Biophys Mol Biol ; 133: 36-48, 2018 03.
Article in English | MEDLINE | ID: mdl-29126668

ABSTRACT

To compare the in vitro effectiveness of Low-Level Laser Therapy (LLLT) and Low Intensity Pulsed Ultrasound (LIPUS) on bony cells and related stem cells. In this study, we aim to systematically review the published scientific literature which explores the use of LLLT and LIPUS to biostimulate the activity or the proliferation of bony cells or stem cells in vitro. We searched the database PubMed for LLLT or LIPUS, with/without bone, osteoblast, osteocyte, stem cells, the human osteosarcoma cell line (MG63), bone-forming cells, and cell culture (or in vitro). These studies were subdivided into categories exploring the effect of LLLT or LIPUS on bony cells, stem cells, and other related cells. 75 articles were found between 1987 and 2016; these included: 50 full paper articles on LLLT and 25 full papers on LIPUS. These articles met the eligibility criteria and were included in our review. A detailed and concise description of the LLLT and the LIPUS protocols and their individual effects on bony cells or stem cells and their results are presented in five tables. Based on the main results and the conclusions of the reviewed articles in the current work, both, LLLT and LIPUS, apply a biostimulatory effect on osteoblasts, osteocytes, and enhance osteoblast proliferation and differentiation on different bony cell lines used in in vitro studies, and therefore, these may be useful tools for bone regeneration therapy. Moreover, in consideration of future cell therapy protocols, both, LLLT and LIPUS (especially LLLT), enhnce a significant increase in the initial number of SCs before differentiation, thus increasing the number of differentiated cells for tissue engineering, regenerative medicine, and healing. Further studies are necessary to determine the LLLT or the LIPUS parameters, which are optimal for biostimsulating bony cells and SCs for bone healing and regenerative medicine.


Subject(s)
Bone and Bones/cytology , Low-Level Light Therapy/methods , Stem Cells/radiation effects , Ultrasonic Therapy/methods , Humans
19.
Prog Biophys Mol Biol ; 132: 3-22, 2018 01.
Article in English | MEDLINE | ID: mdl-28688752

ABSTRACT

The aim of this paper is to study the in vivo potency of low-level laser therapy (LLLT) and low intensity pulsed ultrasound (LIPUS) alone, accompanied by bone grafts, or accompanied by other factors on fracture healing in animal models and patients. In this paper, we aim to systematically review the published scientific literature regarding the use of LLLT and LIPUS to accelerate fracture healing in animal models and patients. We searched the PubMed database for the terms LLLT or LIPUS and/or bone, and fracture. Our analysis also suggests that both LIPUS and LLLT may be beneficial to fracture healing in patients, and that LIPUS is more effective. These finding are of considerable importance in those treatments with a LIPUS, as a laser device may reduce healing time. The most clinically relevant impact of the LIPUS treatment could be a significant reduction in the proportion of patients who go on to develop a nonunion. If it is confirmed that the therapeutic influence is true and reliable, patients will obtain benefits from LIPUS and LLLT. Further clinical trials of high methodological quality are needed in order to determine the optimal role of LIPUS and LLLT in fracture healing in patients.


Subject(s)
Fracture Healing/radiation effects , Low-Level Light Therapy/methods , Animals , Humans , Models, Animal
20.
Photomed Laser Surg ; 35(10): 537-545, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28358661

ABSTRACT

OBJECTIVE: This study aimed to assess the effects of Photobiomodulation (PBM) with pulsed wave laser on Hounsfield unit (HU) and bone strength at a catabolic response (bone resorption) of a callus bone defect in healthy and streptozotocin (STZ)- induced type I diabetes mellitus (TI DM) in rats. BACKGROUND DATA: Conflicting results exist regarding the effect of PBM on bone healing in healthy and diabetic animals. MATERIALS AND METHODS: We randomly divided 20 adult female rats into the following groups: (1) control, no TI DM, and no PBM; (2) no TI DM and PBM; (3) TI DM and no PBM; and (4) TI DM and PBM. TI DM was induced by STZ. All rats underwent partial transversal standardized osteotomies in their right tibias. The rats received PBM (890 nm, 80 Hz, 1.5 J/cm2) thrice per week during 30 days. At 4 weeks after the surgery, the rats were sacrificed and their tibias submitted to computed tomography scanning to measure HU. The samples underwent a three-point bending test to evaluate bone strength. RESULTS: Analysis of variance (ANOVA) (p = 0.013) results showed that treatment by PBM significantly increased the biomechanical property (stress high load) of the callus defect from the partial tibia osteotomy in healthy rats compared to the control groups. However, we observed no significant increase in the biomechanical properties of the laser-treated diabetic bone defect compared to the control diabetic group. The ANOVA for the HU of callus density produced a p value of 0.000. A significant increase existed in the mean callus density in the healthy groups compared to the diabetic groups. CONCLUSIONS: The 80-Hz laser did not significantly enhance bone repair from an osteotomy of the tibia in an experimental model of TI DM rats.


Subject(s)
Bone Regeneration/radiation effects , Diabetes Mellitus, Experimental , Low-Level Light Therapy/methods , Osteotomy/methods , Tensile Strength/radiation effects , Analysis of Variance , Animals , Biomechanical Phenomena , Bone Regeneration/physiology , Disease Models, Animal , Female , Fracture Healing/radiation effects , Random Allocation , Rats , Rats, Wistar , Reference Values , Tibia/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...