Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(5)2023 09 22.
Article in English | MEDLINE | ID: mdl-37473753

ABSTRACT

Objective. The subthalamic nucleus (STN) of the basal ganglia interacts with the medial prefrontal cortex (mPFC) and shapes a control loop, specifically when the brain receives contradictory information from either different sensory systems or conflicting information from sensory inputs and prior knowledge that developed in the brain. Experimental studies demonstrated that significant increases in theta activities (2-8 Hz) in both the STN and mPFC as well as increased phase synchronization between mPFC and STN are prominent features of conflict processing. While these neural features reflect the importance of STN-mPFC circuitry in conflict processing, a low-dimensional representation of the mPFC-STN interaction referred to as a cognitive state, that links neural activities generated by these sub-regions to behavioral signals (e.g. the response time), remains to be identified.Approach. Here, we propose a new model, namely, the heterogeneous input discriminative-generative decoder (HI-DGD) model, to infer a cognitive state underlying decision-making based on neural activities (STN and mPFC) and behavioral signals (individuals' response time) recorded in ten Parkinson's disease (PD) patients while they performed a Stroop task. PD patients may have conflict processing which is quantitatively (may be qualitative in some) different from healthy populations.Main results. Using extensive synthetic and experimental data, we showed that the HI-DGD model can diffuse information from neural and behavioral data simultaneously and estimate cognitive states underlying conflict and non-conflict trials significantly better than traditional methods. Additionally, the HI-DGD model identified which neural features made significant contributions to conflict and non-conflict choices. Interestingly, the estimated features match well with those reported in experimental studies.Significance. Finally, we highlight the capability of the HI-DGD model in estimating a cognitive state from a single trial of observation, which makes it appropriate to be utilized in closed-loop neuromodulation systems.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Stroop Test , Conflict, Psychological , Parkinson Disease/therapy , Subthalamic Nucleus/physiology , Cognition , Deep Brain Stimulation/methods
2.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37370650

ABSTRACT

Deep brain stimulation (DBS) is widely used as a treatment option for patients with movement disorders. In addition to its clinical impact, DBS has been utilized in the field of cognitive neuroscience, wherein the answers to several fundamental questions underpinning the mechanisms of neuromodulation in decision making rely on the ways in which a burst of DBS pulses, usually delivered at a clinical frequency, i.e., 130 Hz, perturb participants' choices. It was observed that neural activities recorded during DBS were contaminated with large artifacts, which lasts for a few milliseconds, as well as a low-frequency (slow) signal (~1-2 Hz) that can persist for hundreds of milliseconds. While the focus of most of methods for removing DBS artifacts was on the former, the artifact removal capabilities of the slow signal have not been addressed. In this work, we propose a new method based on combining singular value decomposition (SVD) and normalized adaptive filtering to remove both large (fast) and slow artifacts in local field potentials, recorded during a cognitive task in which bursts of DBS were utilized. Using synthetic data, we show that our proposed algorithm outperforms four commonly used techniques in the literature, namely, (1) normalized least mean square adaptive filtering, (2) optimal FIR Wiener filtering, (3) Gaussian model matching, and (4) moving average. The algorithm's capabilities are further demonstrated by its ability to effectively remove DBS artifacts in local field potentials recorded from the subthalamic nucleus during a verbal Stroop task, highlighting its utility in real-world applications.

3.
Entropy (Basel) ; 25(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37190377

ABSTRACT

Cortical neurons receive mixed information from the collective spiking activities of primary sensory neurons in response to a sensory stimulus. A recent study demonstrated an abrupt increase or decrease in stimulus intensity and the stimulus intensity itself can be respectively represented by the synchronous and asynchronous spikes of S1 neurons in rats. This evidence capitalized on the ability of an ensemble of homogeneous neurons to multiplex, a coding strategy that was referred to as synchrony-division multiplexing (SDM). Although neural multiplexing can be conceived by distinct functions of individual neurons in a heterogeneous neural ensemble, the extent to which nearly identical neurons in a homogeneous neural ensemble encode multiple features of a mixed stimulus remains unknown. Here, we present a computational framework to provide a system-level understanding on how an ensemble of homogeneous neurons enable SDM. First, we simulate SDM with an ensemble of homogeneous conductance-based model neurons receiving a mixed stimulus comprising slow and fast features. Using feature-estimation techniques, we show that both features of the stimulus can be inferred from the generated spikes. Second, we utilize linear nonlinear (LNL) cascade models and calculate temporal filters and static nonlinearities of differentially synchronized spikes. We demonstrate that these filters and nonlinearities are distinct for synchronous and asynchronous spikes. Finally, we develop an augmented LNL cascade model as an encoding model for the SDM by combining individual LNLs calculated for each type of spike. The augmented LNL model reveals that a homogeneous neural ensemble model can perform two different functions, namely, temporal- and rate-coding, simultaneously.

4.
Neural Comput ; 34(5): 1100-1135, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35344988

ABSTRACT

With the accelerated development of neural recording technology over the past few decades, research in integrative neuroscience has become increasingly reliant on data analysis methods that are scalable to high-dimensional recordings and computationally tractable. Latent process models have shown promising results in estimating the dynamics of cognitive processes using individual models for each neuron's receptive field. However, scaling these models to work on high-dimensional neural recordings remains challenging. Not only is it impractical to build receptive field models for individual neurons of a large neural population, but most neural data analyses based on individual receptive field models discard the local history of neural activity, which has been shown to be critical in the accurate inference of the underlying cognitive processes. Here, we propose a novel, scalable latent process model that can directly estimate cognitive process dynamics without requiring precise receptive field models of individual neurons or brain nodes. We call this the direct discriminative decoder (DDD) model. The DDD model consists of (1) a discriminative process that characterizes the conditional distribution of the signal to be estimated, or state, as a function of both the current neural activity and its local history, and (2) a state transition model that characterizes the evolution of the state over a longer time period. While this modeling framework inherits advantages of existing latent process modeling methods, its computational cost is tractable. More important, the solution can incorporate any information from the history of neural activity at any timescale in computing the estimate of the state process. There are many choices in building the discriminative process, including deep neural networks or gaussian processes, which adds to the flexibility of the framework. We argue that these attributes of the proposed methodology, along with its applicability to different modalities of neural data, make it a powerful tool for high-dimensional neural data analysis. We also introduce an extension of these methods, called the discriminative-generative decoder (DGD). The DGD includes both discriminative and generative processes in characterizing observed data. As a result, we can combine physiological correlates like behavior with neural data to better estimate underlying cognitive processes. We illustrate the methods, including steps for inference and model identification, and demonstrate applications to multiple data analysis problems with high-dimensional neural recordings. The modeling results demonstrate the computational and modeling advantages of the DDD and DGD methods.


Subject(s)
Neural Networks, Computer , Neurons , Brain/physiology , Neurons/physiology , Normal Distribution
5.
Entropy (Basel) ; 22(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-33286650

ABSTRACT

The amount of information that differentially correlated spikes in a neural ensemble carry is not the same; the information of different types of spikes is associated with different features of the stimulus. By calculating a neural ensemble's information in response to a mixed stimulus comprising slow and fast signals, we show that the entropy of synchronous and asynchronous spikes are different, and their probability distributions are distinctively separable. We further show that these spikes carry a different amount of information. We propose a time-varying entropy (TVE) measure to track the dynamics of a neural code in an ensemble of neurons at each time bin. By applying the TVE to a multiplexed code, we show that synchronous and asynchronous spikes carry information in different time scales. Finally, a decoder based on the Kalman filtering approach is developed to reconstruct the stimulus from the spikes. We demonstrate that slow and fast features of the stimulus can be entirely reconstructed when this decoder is applied to asynchronous and synchronous spikes, respectively. The significance of this work is that the TVE can identify different types of information (for example, corresponding to synchronous and asynchronous spikes) that might simultaneously exist in a neural code.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4732-4735, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441406

ABSTRACT

The emergence of deep learning techniques has provided new tools for the analysis of complex data in the field of neuroscience. In parallel, advanced statistical approaches like point-process modeling provide powerful tools for analyzing the spiking activity of neural populations. How statistical and machine learning techniques compare when applied to neural data remains largely unclear. In this research, we compare the performance of a point-process filter and a long short-term memory (LSTM) network in decoding the 2D movement trajectory of a rat using the neural activity recorded from an ensemble of hippocampal place cells. We compute the least absolute error (LAE), a measure of accuracy of prediction, and the coefficient of determination (R2), a measure of prediction consistency, to compare the performance of these two methods. We show that the LSTM and point-process filter provide comparable accuracy in predicting the position; however, the point-process provides further information about the prediction which is unavailable for LSTM. Though previous results report better performance using deep learning techniques, our results indicate that this is not universally the case. We also investigate how these techniques encode information carried by place cell activity and compare the computational efficiency of the two methods. While the point-process model is built using the receptive field for each place cell, we show that LSTM does not necessarily encode receptive fields, but instead decodes the movement trajectory using other features of neural activity. Although it is less robust, LSTM runs more than 7 times faster than the fastest point-process filter in this research, providing a strong advantage in computational efficiency. Together, these results suggest that the point-process filters and LSTM approaches each provide distinct advantages; the choice of model should be informed by the specific scientific question of interest.


Subject(s)
Deep Learning , Place Cells , Animals , Movement , Rats
7.
Jamba ; 9(1): 368, 2017.
Article in English | MEDLINE | ID: mdl-29955334

ABSTRACT

Extensive damages of natural disasters have made resilience a focus of disaster management plans in order to limit damages. The aim of this study was a comparative evaluation of social and economic resilience in Bam and Rudbar. This applied research attempted to quantify and compare different dimensions of social and economic resilience in Bam and Rudbar with a descriptive-analytical method. Cochran's formula determined the sample size as 330 households from both cities (a total of 660 households). The indicators of social and economic resilience were identified from the literature, and then data were collected through a field study using questionnaires. Data were analysed using multiple linear regression and feed-forward multilayer perceptron artificial neural network. Results denoted that several resilient-related socio-economic features were significantly different for Bam and Rudbar cities, such as the number of earthquakes experienced, length of stay in current neighbourhood and mean individual and household income. Mean social and economic resilience scores were significantly higher for Rudbar (216.3 ± 33.4 and 30.6 ± 7.3) compared to Bam (193 ± 26.5 and 29.4 ± 7.07) (p < 0.05). In addition, linear regression indicated that an increase in education level of the household head, length of stay in current neighbourhood and household income could result in an increase in social and economic resilience of the households under study. Neural network analysis revealed that social capital and employment recovery are the most and least effective factors, respectively, in both cities. In the population under study, social component, namely, social capital, was the most important determinant of resilience.

SELECTION OF CITATIONS
SEARCH DETAIL
...