Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Contam Hydrol ; 225: 103497, 2019 Aug.
Article in French | MEDLINE | ID: mdl-31102982

ABSTRACT

The dual-porosity structure of peat and the extremely high organic matter content give rise to a complex medium that typically generates prolonged tailing and early 50% concentration breakthrough in the breakthrough curves (BTCs) of chloride (Cl-) and other anions. Untangling whether these observations are due to rate-limited (physical) diffusion into inactive pores, (chemical) adsorption or anion exclusion remains a critical question in peat hydrogeochemistry. This study aimed to elucidate whether Cl- is truly conservative in peat, as usually assumed, and whether the prolonged tailing and early 50% concentration breakthrough of Cl- observed is due to diffusion, adsorption, anion exclusion or a combination of all three. The mobile-immobile (MiM) dual-porosity model was fit to BTCs of Cl- and deuterated water measured on undisturbed cores of the same peat soils, and equilibrium Cl- adsorption batch experiments were conducted. Adsorption of Cl- to undecomposed and decomposed peat samples in batch experiments followed Freundlich isotherms but did not exhibit any trends with the degree of peat decomposition and sorption became negligible below aqueous Cl- concentrations of ~310 mg L-1. The dispersivity determined by fitting the Cl- BTCs whether assuming adsorption or no adsorption were significantly different than determined by the deuterated water (p < .0001). However, no statistical differences in dispersivity (p = .27) or immobile water content (p = .97) was observed between deuterated water and Cl- when accounting for anion exclusion. A higher degree of decomposition significantly increased anion exclusion (p < .0001) but did not influence the diffusion of either tracer into the immobile porosity. Contrary to previous assumptions, Cl- is not truly conservative in peat due to anion exclusion, and adsorption at higher aqueous concentrations, but the overall effect of anion exclusion on transport is likely minimal.


Subject(s)
Soil , Water Movements , Adsorption , Diffusion , Porosity
2.
J Environ Manage ; 227: 209-215, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30193210

ABSTRACT

Manures are important soil nutrient conditioners and source of several pathogenic bacteria that potentially contribute to groundwater and surface water pollution. The best management practices need a solid understanding of manure sources, concentrations, and strategies to limit the number of bacteria in natural soil environment. In this study, a series of soil column experiments were conducted to investigate how bacteria mobility can potentially be influenced by retention mechanisms while moving through undisturbed saturated soil. This was assessed by bacteria retention profiles and mobility indices including the maximum transported (Cmax-T) and retained (Cmax-R) concentrations, filtration coefficient (λf) and the maximum depth of bacteria transport (Zmax). Three different soil samples (sandy, loamy and silty clay loam) were enriched with three types of manures (cow, sheep, and poultry), placed on top of three soil columns (16 cm diameter, 30 cm height) with an equivalent of 10 Mg ha-1 (dry basis) summing up to a total of 36 columns. Leaching was performed under saturated steady-state conditions (i.e., 1.62 cm min-1) for a duration of 4 pore volumes. After percolation, soil columns were sliced into six 5-cm interval layers and slices were characterized for retained bacteria. Results showed irregular exponential or quasi-exponential bacteria retention profiles for cow and sheep manures, whereas uniform-shaped profiles occurred for poultry manure. The latter variant also switched to exponential shape for the sandy soil at the highest and lowest Cmax-T and Cmax-R values due to higher pore water velocity. The λf and the Zmax values were also found to be affected by soil texture and manure origin. The λf was higher for poultry manure due to higher free-cell transport of bacteria most probably induced by higher amount of soluble mobile components. However, the greater amounts of transported wooden materials released from cow and sheep manures acted as harbors for bacteria. Accordingly, the filtration rate decreased and tailing effects for bacteria transport increased. The results also suggest that the practices and strategies for using manures could be optimized according to the respective transport behavior to manage the bacteria retention with respect to soil and manure types to reduce soil and water pollution.


Subject(s)
Enterobacteriaceae , Feces/microbiology , Groundwater , Manure , Animals , Cattle , Female , Sheep , Soil , Soil Pollutants
3.
J Environ Manage ; 201: 388-396, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28697382

ABSTRACT

A precise evaluation of bacteria transport and mathematical investigations are useful for best management practices in agroecosystems. In this study, using laboratory experiments and modeling approaches, we assess the transport of bacteria released from three types of manure (cow, sheep, and poultry) to find the importance of the common manures in agricultural activities in soil and water pollution. Thirty six intact soil columns with different textures (sandy, loamy, and silty clay loam) were sampled. Fecal coliform leaching from layers of the manures on the soil surface was conducted under steady-state saturated flow conditions at 20 °C for up to four Pore Volumes (PVs). Separate leaching experiments were conducted to obtain the initial concentrations of bacteria released from the manures (Co). Influent (Co) and effluent (C) bacteria concentrations were measured by the plate-count method and the normalized concentrations (C/C0) were plotted versus PV representing the breakthrough curves (BTCs). Transport parameters were predicted using the attachment/detachment model (two-kinetic site) in HYDRUS-1D. Simulations fitted well the experimental data (R2 = 0.50-0.96). The attachment, detachment, and straining coefficients of bacteria were more influenced by the soils treated with cow manure compared to the sheep and poultry manures. Influent curves of fecal coliforms from the manures (leached without soil) illustrated that the poultry manure had the highest potential to pollute the effluent water from the soils in term of concentration, but the BTCs and simulated data related to the treated soils illustrated that the physical shape of cow manure was more important to both straining and detachment of bacteria back into the soil solution. Detachment trends of bacteria were observed through loam and silty clay loam soils treated with cow manure compared to the cow manure enriched sandy soil. We conclude that management strategies must specifically minimize the effect of fecal coliform concentrations before field application, especially for the combination of poultry and cow manures, which has higher solubility and tailing behavior, respectively. Interestingly, the addition of sheep manure with all three soils had the lowest mobilization of bacteria. We also suggest studying the chemistry of soil solution affected by manures to present all relevant information which affect bacterial movement through soils during leaching.


Subject(s)
Agriculture , Manure , Soil Pollutants , Animals , Cattle , Female , Sheep , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...