Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(14): 147601, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339437

ABSTRACT

Nematicity in quantum Hall systems has been experimentally well established at excited Landau levels. The mechanism of the symmetry breaking, however, is still unknown. Pomeranchuk instability of Fermi liquid parameter F_{ℓ}≤-1 in the angular momentum ℓ=2 channel has been argued to be the relevant mechanism, yet there are no definitive theoretical proofs. Here we calculate, using the variational Monte Carlo technique, Fermi liquid parameters F_{ℓ} of the composite fermion Fermi liquid with a finite layer width. We consider F_{ℓ} in different Landau levels n=0, 1, 2 as a function of layer width parameter η. We find that unlike the lowest Landau level, which shows no sign of Pomeranchuk instability, higher Landau levels show nematic instability below critical values of η. Furthermore, the critical value η_{c} is higher for the n=2 Landau level, which is consistent with observation of nematic order in ambient conditions only in the n=2 Landau levels. The picture emerging from our work is that approaching the true 2D limit brings half-filled higher Landau-level systems to the brink of nematic Pomeranchuk instability.

2.
Phys Rev Lett ; 119(2): 026801, 2017 Jul 14.
Article in English | MEDLINE | ID: mdl-28753327

ABSTRACT

Inter-Landau-level transitions break particle hole symmetry and will choose either the Pfaffian or the anti-Pfaffian state as the absolute ground state at 5/2 filling of the fractional quantum Hall effect. An approach based on truncating the Hilbert space has favored the anti-Pfaffian. A second approach based on an effective Hamiltonian produced the Pfaffian. In this Letter, perturbation theory is applied to finite sizes without bias to any specific pseudopotential component. This method also singles out the anti-Pfaffian. A critical piece of the effective Hamiltonian, which was absent in previous studies, reverts the ground state at 5/2 to the anti-Pfaffian.

3.
Phys Rev Lett ; 114(20): 206402, 2015 May 22.
Article in English | MEDLINE | ID: mdl-26047244

ABSTRACT

The so-called "non-Fermi liquid" behavior is very common in strongly correlated systems. However, its operational definition in terms of "what it is not" is a major obstacle for the theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two-dimensional electron fluid under magnetic field and filling fraction ν=1/2, which is believed to be a non-Fermi liquid state. Using a composite fermion wave function which captures the ν=1/2 state very accurately, we compute the second Rényi entropy using the variational Monte Carlo technique. We find the entanglement entropy scales as LlogL with the length of the boundary L as it does for free fermions, but has a prefactor twice that of free fermions.

4.
Phys Rev Lett ; 106(11): 116801, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21469885

ABSTRACT

We perform numerical studies to determine if the fractional quantum Hall state observed at a filling factor of ν=5/2 is the Moore-Read wave function or its particle-hole conjugate, the so-called anti-Pfaffian. Using a truncated Hilbert space approach we find that, for realistic interactions, including Landau-level mixing, the ground state remains fully polarized and the anti-Pfaffian is strongly favored.

5.
Phys Rev Lett ; 101(17): 176803, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18999771

ABSTRACT

We provide numerical evidence for composite fermion pairing in quantum Hall bilayer systems at filling nu=1/2+1/2 for intermediate spacing between the layers. We identify the phase as p_(x)+ip_(y) pairing, and construct high accuracy trial wave functions to describe the ground state on the sphere. For large distances between the layers, and for finite systems, a competing "Hund's rule" state, or composite fermion liquid, prevails for certain system sizes.

SELECTION OF CITATIONS
SEARCH DETAIL
...