Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 16(6): 066042, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31571608

ABSTRACT

OBJECTIVE: The ultimate goal of many brain-computer interface (BCI) research efforts is to provide individuals with severe motor impairments with a communication channel that they can control at will. To achieve this goal, an important system requirement is asynchronous control, whereby users can initiate intentional brain activation in a self-paced rather than system-cued manner. However, to date, asynchronous BCIs have been explored in a minority of BCI studies and their performance is generally below that of system-paced alternatives. In this paper, we present an asynchronous electroencephalography (EEG) BCI that detects a non-motor imagery cognitive task and investigated the possibility of improving its performance using error-related potentials (ErrP). APPROACH: Ten able-bodied adults attended two sessions of data collection each, one for training and one for testing the BCI. The visual interface consisted of a centrally located cartoon icon. For each participant, an asynchronous BCI differentiated among the idle state and a personally selected cognitive task (mental arithmetic, word generation or figure rotation). The BCI continuously analyzed the EEG data stream and displayed real-time feedback (i.e. icon fell over) upon detection of brain activity indicative of a cognitive task. The BCI also monitored the EEG signals for the presence of error-related potentials following the presentation of feedback. An ErrP classifier was invoked to automatically alter the task classifier outcome when an error-related potential was detected. MAIN RESULTS: The average post-error correction trial success rate across participants, 85% [Formula: see text] 12%, was significantly higher (p  < 0.05) than that pre-error correction (78% [Formula: see text] 11%). SIGNIFICANCE: Our findings support the addition of ErrP-correction to maximize the performance of asynchronous BCIs..


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Event-Related Potentials, P300/physiology , Mathematical Concepts , Mental Processes/physiology , Spatial Processing/physiology , Adult , Electroencephalography/methods , Female , Humans , Male
2.
J Neural Eng ; 16(1): 016005, 2019 02.
Article in English | MEDLINE | ID: mdl-30260320

ABSTRACT

OBJECTIVE: Most brain-computer interfaces (BCIs) based on functional near-infrared spectroscopy (fNIRS) require that users perform mental tasks such as motor imagery, mental arithmetic, or music imagery to convey a message or to answer simple yes or no questions. These cognitive tasks usually have no direct association with the communicative intent, which makes them difficult for users to perform. APPROACH: In this paper, a 3-class intuitive BCI is presented which enables users to directly answer yes or no questions by covertly rehearsing the word 'yes' or 'no' for 15 s. The BCI also admits an equivalent duration of unconstrained rest which constitutes the third discernable task. Twelve participants each completed one offline block and six online blocks over the course of two sessions. The mean value of the change in oxygenated hemoglobin concentration during a trial was calculated for each channel and used to train a regularized linear discriminant analysis (RLDA) classifier. MAIN RESULTS: By the final online block, nine out of 12 participants were performing above chance (p < 0.001 using the binomial cumulative distribution), with a 3-class accuracy of 83.8% ± 9.4%. Even when considering all participants, the average online 3-class accuracy over the last three blocks was 64.1 % ± 20.6%, with only three participants scoring below chance (p < 0.001). For most participants, channels in the left temporal and temporoparietal cortex provided the most discriminative information. SIGNIFICANCE: To our knowledge, this is the first report of an online 3-class imagined speech BCI. Our findings suggest that imagined speech can be used as a reliable activation task for selected users for development of more intuitive BCIs for communication.


Subject(s)
Cerebral Cortex/physiology , Imagination/physiology , Speech/physiology , Adult , Female , Humans , Male , Photic Stimulation/methods , Random Allocation , Spectroscopy, Near-Infrared/classification , Spectroscopy, Near-Infrared/methods , Young Adult
3.
Front Hum Neurosci ; 11: 254, 2017.
Article in English | MEDLINE | ID: mdl-28596725

ABSTRACT

In recent years, the readiness potential (RP), a type of pre-movement neural activity, has been investigated for asynchronous electroencephalogram (EEG)-based brain-computer interfaces (BCIs). Since the RP is attenuated for involuntary movements, a BCI driven by RP alone could facilitate intentional control amid a plethora of unintentional movements. Previous studies have mainly attempted binary single-trial classification of RP. An RP-based BCI with three or more states would expand the options for functional control. Here, we propose a ternary BCI based on single-trial RPs. This BCI classifies amongst an idle state, a left hand and a right hand self-initiated fine movement. A pipeline of spatio-temporal filtering with per participant parameter optimization was used for feature extraction. The ternary classification was decomposed into binary classifications using a decision-directed acyclic graph (DDAG). For each class pair in the DDAG structure, an ordered diversified classifier system (ODCS-DDAG) was used to select the best among various classification algorithms or to combine the results of different classification algorithms. Using EEG data from 14 participants performing self-initiated left or right key presses, punctuated with rest periods, we compared the performance of ODCS-DDAG to a ternary classifier and four popular multiclass decomposition methods using only a single classification algorithm. ODCS-DDAG had the highest performance (0.769 Cohen's Kappa score) and was significantly better than the ternary classifier and two of the four multiclass decomposition methods. Our work supports further study of RP-based BCI for intuitive asynchronous environmental control or augmentative communication.

SELECTION OF CITATIONS
SEARCH DETAIL
...