Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
FASEB J ; 35(7): e21685, 2021 07.
Article in English | MEDLINE | ID: mdl-34085343

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (Letm1) is a mitochondrial inner membrane protein involved in Ca2+ and K+ homeostasis in mammalian cells. Here, we demonstrate that the Letm1 orthologue of Trypanosoma cruzi, the etiologic agent of Chagas disease, is important for mitochondrial Ca2+ uptake and release. The results show that both mitochondrial Ca2+ influx and efflux are reduced in TcLetm1 knockdown (TcLetm1-KD) cells and increased in TcLetm1 overexpressing cells, without alterations in the mitochondrial membrane potential. Remarkably, TcLetm1 knockdown or overexpression increases or does not affect mitochondrial Ca2+ levels in epimastigotes, respectively. TcLetm1-KD epimastigotes have reduced growth, and both overexpression and knockdown of TcLetm1 cause a defect in metacyclogenesis. TcLetm1-KD also affected mitochondrial bioenergetics. Invasion of host cells by TcLetm1-KD trypomastigotes and their intracellular replication is greatly impaired. Taken together, our findings indicate that TcLetm1 is important for Ca2+ homeostasis and cell viability in T cruzi.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Cell Differentiation , Chagas Disease/parasitology , Mitochondria/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/growth & development , Animals , Biological Transport , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/genetics , Chlorocebus aethiops , Energy Metabolism , Membrane Potential, Mitochondrial , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Trypanosoma cruzi/metabolism , Vero Cells
2.
J. physiol. biochem ; 67(3): 371-379, sept. 2011. tab
Article in English | IBECS | ID: ibc-122602

ABSTRACT

No disponible


Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n = 6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences (AU)


Subject(s)
Animals , Mice , Dietary Fats/pharmacokinetics , Dyslipidemias/physiopathology , Energy Metabolism , Metabolic Syndrome/physiopathology , Disease Models, Animal , Risk Factors
3.
Br J Nutr ; 106(6): 845-51, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21736850

ABSTRACT

The objective of the present study was to investigate whether early undernutrition changes the chronic inflammatory response, so as to study its influence on pharmacological response to indomethacin. Rat offspring of dams fed from the first day of gestation to term or throughout the lactation period received a balanced diet (NN) or a basic regional diet (BRD) from northeast Brazil. According to their dams, the offspring were divided into three groups: NN; basic regional diet during gestation (BRD-g, undernourished during gestation); basic regional diet during gestation and lactation (BRD-gl, undernourished during gestation and lactation). At 2 months of age, Freund's adjuvant (0·2 ml) was inoculated into the plantar surface of the hind paw (day 0) of animals. All animals orally received saline (0·9 %) for 28 d. Another group of adult offspring was subjected to the same procedure as described above, but orally received indomethacin (2 mg/kg) instead of saline, and divided into three subgroups: NN treated with indomethacin (NNI); BRD-g treated with indomethacin (BRDI-g); BRD-gl treated with indomethacin (BRDI-gl). The hind paw volume was calculated on days 0 (initial paw volume), 7, 14 and 28. Hind paw swelling, blood albumin and C-reactive protein (CRP) levels and leucocyte counts were evaluated as markers of inflammation. Reduced hind paw swelling and the blood levels of serum albumin and CRP were found in the BRD-g and BRD-gl offspring. However, no difference was found in the leucocyte count. Compared with their respective saline-treated groups (NN, BRD-g and BRD-gl), the anti-inflammatory effect of indomethacin was lower in the BRDI-g and BRDI-gl groups than in the NNI group. We conclude that early undernutrition attenuated the chronic inflammatory response and the anti-inflammatory effect of indomethacin.


Subject(s)
Indomethacin/pharmacology , Inflammation , Malnutrition/complications , Animal Feed , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bioethics , C-Reactive Protein/metabolism , Female , Lactation , Male , Maternal Exposure , Pregnancy , Pregnancy, Animal , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...