Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: mdl-37191720

ABSTRACT

The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4+ T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4+ T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4+ T cells at the intestinal epithelium, imprinting a tissue-specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4+ T cells (Tregs). This steady state CD4+ T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased proinflammatory gene expression. Finally, we identified both steady-state epithelium-adapted CD4+ T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.


Subject(s)
CD4-Positive T-Lymphocytes , Intestines , T-Lymphocytes, Regulatory , Immune Tolerance , Antigens/metabolism , Dietary Proteins/metabolism
2.
Science ; 377(6606): 660-666, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35926021

ABSTRACT

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Subject(s)
Bacteroidetes , CD4-Positive T-Lymphocytes , Colitis , Intestinal Mucosa , beta-N-Acetylhexosaminidases , Animals , Bacteroidetes/enzymology , Bacteroidetes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/immunology , Colitis/immunology , Colitis/microbiology , Disease Models, Animal , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , beta-N-Acetylhexosaminidases/immunology
3.
Immunity ; 55(7): 1234-1249.e6, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35617965

ABSTRACT

The intestinal epithelium comprises the body's largest surface exposed to viruses. Additionally, the gut epithelium hosts a large population of intraepithelial T lymphocytes, or IELs, although their role in resistance against viral infections remains elusive. By fate-mapping T cells recruited to the murine intestine, we observed an accumulation of newly recruited CD4+ T cells after infection with murine norovirus CR6 and adenovirus type-2 (AdV), but not reovirus. CR6- and AdV-recruited intraepithelial CD4+ T cells co-expressed Ly6A and chemokine receptor CCR9, exhibited T helper 1 and cytotoxic profiles, and conferred protection against AdV in vivo and in an organoid model in an IFN-γ-dependent manner. Ablation of the T cell receptor (TCR) or the transcription factor ThPOK in CD4+ T cells prior to AdV infection prevented viral control, while TCR ablation during infection did not impact viral clearance. These results uncover a protective role for intraepithelial Ly6A+CCR9+CD4+ T cells against enteric adenovirus.


Subject(s)
Intestine, Small , Virus Diseases , Animals , Antigens, Ly , CD4-Positive T-Lymphocytes , Intestinal Mucosa , Membrane Proteins , Mice , Receptors, Chemokine
SELECTION OF CITATIONS
SEARCH DETAIL
...