Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; 137(5): 773-83, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19961654

ABSTRACT

An ATP diphosphohydrolase (EC 3.6.1.5) activity was identified in a Leishmania (Viannia) braziliensis promastigotes preparation (Lb). Ultrastructural cytochemical microscopy showed this protein on the parasite surface and also stained a possible similar protein at the mitochondrial membrane. Isolation of an active ATP diphosphohydrolase isoform from Lb was obtained by cross-immunoreactivity with polyclonal anti-potato apyrase antibodies. These antibodies, immobilized on Protein A-Sepharose, immunoprecipitated a polypeptide of approximately 48 kDa and, in lower amount, a polypeptide of approximately 43 kDa, and depleted 83% ATPase and 87% of the ADPase activities from detergent-homogenized Lb. Potato apyrase was recognized in Western blots by IgG antibody from American cutaneous leishmaniasis (ACL) patients, suggesting that the parasite and vegetable proteins share antigenic conserved epitopes. Significant IgG seropositivity in serum samples diluted 1:50 from ACL patients (n=20) for Lb (65%) and potato apyrase (90%) was observed by ELISA technique. Significant IgG antibody reactivity was also observed against synthetic peptides belonging to a conserved domain from L. braziliensis NDPase (80% seropositivity) and its potato apyrase counterpart (50% seropositivity), in accordance with the existence of shared antigenic epitopes and demonstrating that in leishmaniasis infection the domain r82-103 from L. braziliensis NDPase is a target for the human immune response.


Subject(s)
Apyrase/metabolism , Leishmania braziliensis/enzymology , Leishmaniasis, Cutaneous/parasitology , Amino Acid Sequence , Animals , Antibodies, Protozoan/blood , Apyrase/genetics , Apyrase/immunology , Blotting, Western , Humans , Immunoprecipitation , Isoenzymes , Leishmania braziliensis/immunology , Leishmania braziliensis/ultrastructure , Leishmaniasis, Cutaneous/immunology , Microscopy, Electron , Molecular Sequence Data
2.
Parasitology ; 135(8): 943-53, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18598576

ABSTRACT

Evolutionary and closer structural relationships are demonstrated by phylogenetic analysis, peptide prediction and molecular modelling between Solanum tuberosum apyrase, Schistosoma mansoni SmATPase 2 and Leishmania braziliensis NDPase. Specific protein domains are suggested to be potentially involved in the immune response, and also seem to be conserved during host and parasite co-evolution. Significant IgG antibody reactivity was observed in sera from patients with American cutaneous leishmaniasis (ACL) and schistosomiasis using potato apyrase as antigen in ELISA. S. mansoni adult worm or egg, L. braziliensis promastigote (Lb) and Trypanosoma cruzi epimastigote (EPI) have ATP diphosphohydrolases, and antigenic preparations of them were evaluated. In ACL patients, IgG seropositivity was about 43% and 90% for Lb and potato apyrase, respectively, while IgM was lower (40%) or IgG (100%) seropositivity for both soluble egg (SEA) and adult worm (SWAP) antigens was higher than that found for potato apyrase (IgM=10%; IgG=39%). In Chagas disease, IgG seropositivity for EPI and potato apyrase was 97% and 17%, respectively, while the IgM was low (3%) for both antigens. The study of the conserved domains from both parasite proteins and potato apyrase could lead to the development of new drug targets or molecular markers.


Subject(s)
Apyrase/immunology , Conserved Sequence/immunology , Epitope Mapping , Parasites/enzymology , Parasites/immunology , Solanum tuberosum/enzymology , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Apyrase/chemistry , Chagas Disease/blood , Chagas Disease/immunology , Humans , Leishmania braziliensis/enzymology , Leishmania braziliensis/genetics , Leishmania braziliensis/immunology , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/immunology , Molecular Sequence Data , Parasites/genetics , Phylogeny , Protein Structure, Tertiary , Schistosoma mansoni/enzymology , Schistosoma mansoni/genetics , Schistosoma mansoni/immunology , Schistosomiasis/blood , Schistosomiasis/immunology , Sequence Alignment
3.
Parasitology ; 135(3): 327-35, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18005473

ABSTRACT

A Leishmania (Leishmania) amazonensis ATP diphosphohydrolase isoform was partially purified from plasma membrane of promastigotes by preparative non-denaturing polyacrylamide gel electrophoresis. SDS-PAGE followed by Western blots developed with polyclonal anti-potato apyrase antibodies identified diffuse bands of about 58-63 kDa, possibly glycosylated forms of this protein. By ELISA technique, a significantly higher total IgG antibody level against potato apyrase was found in serum from promastigote-infected mice, as compared to the uninfected mice, confirming both the existence of shared epitopes between the parasite and vegetable proteins, and the parasite ATP diphosphohydrolase antigenicity. By Western blotting, serum from amastigote-infected BALB/c mice recognizes both potato apyrase and this antigenic ATP diphosphohydrolase isoform isolated from promastigotes, suggesting that it is also expressed in the amastigote stage. The infection monitored along a 90-day period in amastigote-infected mice showed reactivity of IgG2a antibody in early steps of infection, while the disappearance of the IgG2a response and elevation of IgG1 antibody serum levels against that shared epitopes were associated with the progression of experimental leishmaniasis. This is the first observation of the antigenicity of a L. (L.) amazonensis ATP diphosphohydrolase isoform, and of the ability of cross-immunoreactivity with potato apyrase to differentiate serologically stages of leishmaniasis in infected mice.


Subject(s)
Apyrase/immunology , Leishmania mexicana/enzymology , Leishmaniasis, Cutaneous/diagnosis , Solanum tuberosum/enzymology , Animals , Antigenic Variation , Apyrase/isolation & purification , Apyrase/metabolism , Blotting, Western , Cross Reactions , Disease Progression , Electrophoresis, Polyacrylamide Gel , Epitopes , Female , Isoenzymes/immunology , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...