Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 56: e12897, 2023.
Article in English | MEDLINE | ID: mdl-37909496

ABSTRACT

G-quadruplexes (G4) are structures formed at the ends of telomeres rich in guanines and stabilized by molecules that bind to specific sites. TMPyP4 and thymoquinone (TQ) are small molecules that bind to G4 and have drawn attention because of their role as telomerase inhibitors. The aim of this study was to evaluate the effects of telomerase inhibitors on cellular proliferation, senescence, and death. Two cell lines, LC-HK2 (non-small cell lung cancer - NSCLC) and RPE-1 (hTERT-immortalized), were treated with TMPyP4 (5 µM) and TQ (10 µM). Both inhibitors decreased telomerase activity. TMPyP4 increased the percentage of cells with membrane damage associated with cell death and decreased the frequency of cells in the S-phase. TMPyP4 reduced cell adhesion ability and modified the pattern of focal adhesion. TQ acted in a concentration-dependent manner, increasing the frequency of senescent cells and inducing cell cycle arrest in G1 phase. Thus, the present results showed that TMPyP4 and TQ, although acting as telomerase inhibitors, had a broader effect on other signaling pathways and processes in cells, differing from each other. However, they act both on malignant and immortalized cells, and further studies are needed before their anti-cancer potential can be considered.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Telomerase , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Telomerase/metabolism , Focal Adhesions/metabolism , Lung Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Cell Death , Cell Proliferation , Cell Line , Cell Line, Tumor
2.
Braz. j. med. biol. res ; 56: e12897, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520468

ABSTRACT

G‐quadruplexes (G4) are structures formed at the ends of telomeres rich in guanines and stabilized by molecules that bind to specific sites. TMPyP4 and thymoquinone (TQ) are small molecules that bind to G4 and have drawn attention because of their role as telomerase inhibitors. The aim of this study was to evaluate the effects of telomerase inhibitors on cellular proliferation, senescence, and death. Two cell lines, LC‐HK2 (non-small cell lung cancer - NSCLC) and RPE‐1 (hTERT-immortalized), were treated with TMPyP4 (5 μM) and TQ (10 μM). Both inhibitors decreased telomerase activity. TMPyP4 increased the percentage of cells with membrane damage associated with cell death and decreased the frequency of cells in the S‐phase. TMPyP4 reduced cell adhesion ability and modified the pattern of focal adhesion. TQ acted in a concentration-dependent manner, increasing the frequency of senescent cells and inducing cell cycle arrest in G1 phase. Thus, the present results showed that TMPyP4 and TQ, although acting as telomerase inhibitors, had a broader effect on other signaling pathways and processes in cells, differing from each other. However, they act both on malignant and immortalized cells, and further studies are needed before their anti-cancer potential can be considered.

3.
Braz. j. med. biol. res ; 45(8): 721-729, Aug. 2012. ilus, tab
Article in English | LILACS | ID: lil-643658

ABSTRACT

Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.


Subject(s)
Animals , Rats , Carcinoma, Hepatocellular/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cyclic AMP/pharmacology , Liver Neoplasms/pathology , Tretinoin/pharmacology , Cell Line, Tumor , Carcinoma, Hepatocellular/metabolism , Drug Combinations , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Liver Neoplasms/metabolism , Microscopy, Confocal , Mitotic Index , Polymerase Chain Reaction
4.
Genet Mol Res ; 11(2): 1475-85, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22653597

ABSTRACT

Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.


Subject(s)
Genome/genetics , Animals , Ants/classification , Ants/genetics , DNA Transposable Elements/genetics , Phylogeny
5.
Braz J Med Biol Res ; 45(8): 721-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22618858

ABSTRACT

Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3ß) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3ß (inactive form) expression while the expression of Cx43, Tyr216-GSK-3ß (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cyclic AMP/pharmacology , Liver Neoplasms/pathology , Tretinoin/pharmacology , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Drug Combinations , Enzyme-Linked Immunosorbent Assay , Immunoblotting , Liver Neoplasms/metabolism , Microscopy, Confocal , Mitotic Index , Polymerase Chain Reaction , Rats
6.
Genet Mol Res ; 9(2): 849-57, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20449818

ABSTRACT

Mariner-like elements are widely present in diverse organisms. These elements constitute a large fraction of the eukaryotic genome; they transpose by a "cut-and-paste" mechanism with their own transposase protein. We found two groups of mobile elements in the genus Rhynchosciara. PCR using primers designed from R. americana transposons (Ramar1 and Ramar2) were the starting point for this comparative study. Genomic DNA templates of four species: R. hollaenderi, R. millerii, R. baschanti, and Rhynchosciara sp were used and genomic sequences were amplified, sequenced and the molecular structures of the elements characterized as being putative mariner-like elements. The first group included the putative full-length elements. The second group was composed of defective mariner elements that contain a deletion overlapping most of the internal region of the transposase open reading frame. They were named Rmar1 (type 1) and Rmar2 (type 2), respectively. Many conserved amino acid blocks were identified, as well as a specific D,D(34)D signature motif that was defective in some elements. Based on predicted transposase sequences, these elements encode truncated proteins and are phylogenetically very close to mariner-like elements of the mauritiana subfamily. The inverted terminal repeat sequences that flanked the mariner-like elements are responsible for their mobility. These inverted terminal repeat sequences were identified by inverse PCR.


Subject(s)
DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , Diptera/genetics , Transposases/genetics , Animals , Base Sequence , Chromosomes/genetics , In Situ Hybridization , Microscopy, Confocal , Molecular Sequence Data , Phylogeny
7.
Insect Mol Biol ; 15(2): 109-18, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16640721

ABSTRACT

The diptera Rhynchosciara americana (sciaridae) is an important model organism in polyteny and gene amplification research, but up to now a limited amount of data regarding DNA sequences and molecular aspects of this species is available. Considering the importance of going further on the DNA puffs biological meaning, we proposed to generate EST sequences from a DNA library constructed from salivary glands. After their categorization in gene ontology terms, they were used to construct an 'electronic Northern' that represents a general view of the salivary gland metabolic status in an important phase of larval development: the spinning of communal cocoon. In this phase occurs the last polytene DNA replication cycle concomitantly with the specific loci amplification related to protein secretion.


Subject(s)
Diptera/genetics , Expressed Sequence Tags , Amino Acid Sequence , Animals , Codon , DNA, Complementary , Diptera/metabolism , Gene Expression Regulation, Developmental , Insecta/genetics , Larva/growth & development , Larva/metabolism , Molecular Sequence Data , Polymorphism, Single Nucleotide , RNA, Messenger , Salivary Glands/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...