Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Phytother Res ; 30(1): 49-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26514663

ABSTRACT

Hypercholesterolemia is a metabolic disorder characterized by high levels of low-density lipoprotein and blood cholesterol, causing inflammatory lesion. Purinergic signaling modulates the inflammatory and immune responses through adenine nucleotides and nucleoside. Guaraná has hypocholesterolemic and antiinflammatory properties. Considering that there are few studies demonstrating the effects of guaraná powder on the metabolism of adenine nucleotides, we investigated its effects on the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase activity in lymphocytes of rats with diet-induced hypercholesterolemia. The rats were divided into hypercholesterolemic and normal diet groups. Each group was subdivided by treatment: saline, guaraná powder 12.5, 25, or 50 mg/kg/day and caffeine concentration equivalent to highest dose of guaraná, fed orally for 30 days. An increase in adenosine triphosphate hydrolysis was observed in the lymphocytes of rats with hypercholesterolemia and treated with 25 or 50 mg/kg/day when compared with the other groups. The hypercholesterolemic group treated with the highest concentration of guaraná powder showed decreased ecto-adenosine deaminase activity compared with the normal diet groups. Guaraná was able to reduce the total cholesterol and low-density lipoprotein cholesterol to basal levels in hypercholesterolemic rats. High concentrations of guaraná associated with a hypercholesterolemic diet are likely to have contributed to the reduction of the inflammatory process.


Subject(s)
Caffeine/pharmacology , Hypercholesterolemia/drug therapy , Paullinia/chemistry , Theobromine/pharmacology , Theophylline/pharmacology , Adenosine Deaminase/metabolism , Animals , Cholesterol/blood , Cholesterol, LDL/blood , Diet, High-Fat , Lymphocytes/enzymology , Male , Plant Preparations/pharmacology , Rats , Rats, Wistar
2.
Braz. j. med. biol. res ; 45(12): 1172-1182, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-659631

ABSTRACT

The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.


Subject(s)
Female , Humans , Middle Aged , Blood Cell Count , Oxidative Stress/physiology , Resistance Training , Reactive Oxygen Species/blood , Biomarkers/blood , Case-Control Studies , Catalase/blood , Exercise Test , Glutathione Peroxidase/blood , Lipid Peroxidation/physiology , Superoxide Dismutase/blood
3.
Braz J Med Biol Res ; 45(12): 1172-82, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090122

ABSTRACT

The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.


Subject(s)
Blood Cell Count , Oxidative Stress/physiology , Reactive Oxygen Species/blood , Resistance Training , Biomarkers/blood , Case-Control Studies , Catalase/blood , Exercise Test , Female , Glutathione Peroxidase/blood , Humans , Lipid Peroxidation/physiology , Middle Aged , Superoxide Dismutase/blood
4.
Eur J Pharm Biopharm ; 79(2): 241-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21605671

ABSTRACT

We developed a dermatological nanomedicine containing clobetasol propionate-loaded nanocapsules and evaluated its efficacy in a model of contact dermatitis after topical administration in rats. Hydrogels containing clobetasol propionate-loaded lipid-core nanocapsules or nanoemulsion (HG-CP-NC and HG-CP-NE, respectively) were prepared to evaluate the influence of the polymeric wall. They presented adequate pH values (5.50-6.50) and drug content (0.5 mg g(-1)) and their rheograms exhibited a non-Newtonian pseudoplastic behavior. The best in vitro drug release control was obtained for HG-CP-NC (1.03±0.11 µg cm(-2) h) compared to the HG-CP-NE (1.65±0.19 µg cm(-2) h) and the hydrogels containing nonencapsulated drug (HG-CP) (2.79±0.22 µg cm(-2) h). A significant increase in NTPDase activity was observed in lymphocytes for the group treated with 0.05% HG-CP-NC every other day compared to the group treated with 0.05% HG-CP every day using the in vivo model of contact dermatitis. The nanoencapsulation of clobetasol in nanocapsules led to a better control of the drug release from the semisolid nanomedicine and provided better in vivo dermatological efficacy.


Subject(s)
Clobetasol/administration & dosage , Clobetasol/chemistry , Dermatitis, Contact/drug therapy , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Administration, Topical , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Female , Hydrogels/administration & dosage , Hydrogels/chemistry , Hydrogen-Ion Concentration , Lymphocytes/drug effects , Nanomedicine/methods , Particle Size , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...