Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(10): e21015, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867880

ABSTRACT

By combining hydrazide with 2-Acetylpyridine, a hydrazone ligand (HL) was successfully created. Several copper (II) salts have been used to create three copper (II) hydrazone complexes (acetate, sulphate, and chloride). The hydrazide ligand and its copper (II) complexes (1-3) were studied via variety of analytical techniques, including elemental analysis, electronic, infrared, UV-vis Spectrum, XRD study, thermal analysis, also molar conductivity amounts. The spectrum results indicate that in all complexes, the ligand exhibits monobasic tridentate behavior. Octahedral geometries were present in all metal complexes. The Coats-Redfern equations were used to compute and describe the dynamics properties of several steps of TGA (Ea, A, ΔH*, ΔS*, and ΔG*). Calculations using the density functional theory (DFT) were done at the molecular studio software toward examine ligands agent's and its complexes' best structures. The MCF-7 in addition to HepG-2 cell lines was resistant to tumor-inducing effects of the copper (II) chelates. The in vitro antioxidant capacities of all complexes have been estimated via DPPH free radical scavenger assays. Furthermore, zones of inhibition length accustomed to test antimicrobial effect of particular complexes in vitro towards Staphylococcus aureus (Gram positive bacteria) E. coli (Gram negative bacteria). Both absorption spectra and viscosity measurements in calf thymus DNA binding have been used to study the complexes. In order to explore docking research of copper (II) chelates, the crystallographic construction of the SARS-active CoV-2's site protein (PDB ID:6XBH) was used (COVID-19) and breast cancer distorted (PDB ID: 3hb5).

SELECTION OF CITATIONS
SEARCH DETAIL
...