Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38131778

ABSTRACT

Nanomaterials, including carbon nanotubes, graphene oxide, metal-organic frameworks, metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme activity through substrate channeling while improving enzyme stability and reusability. However, there are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention of enzyme activity, and immobilization techniques. Consequently, these subjects have become the focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have undertaken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from natural multi-enzyme processes within living organisms. Substantial progress has been achieved in designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells. This review provides an overview of recent developments in concurrent and sequential approaches involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade reactions conducted on nanostructured electrodes, addressing both the challenges encountered and the innovative solutions devised in this field.


Subject(s)
Bioelectric Energy Sources , Biosensing Techniques , Nanostructures , Nanotubes, Carbon , Humans , Enzymes, Immobilized/chemistry , Nanotubes, Carbon/chemistry , Nanostructures/chemistry , Biosensing Techniques/methods , Electrodes
2.
J Mater Chem B ; 9(28): 5711-5721, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34223862

ABSTRACT

Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hepatitis B Surface Antigens/analysis , Immunoassay , Metal-Organic Frameworks/chemistry , Nanospheres/chemistry , Amines/chemistry , Copper/chemistry , Humans , Metal-Organic Frameworks/chemical synthesis
3.
J Mater Chem B ; 9(5): 1189-1207, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33406200

ABSTRACT

In the past two decades, mesoporous TiO2 has emerged as a promising material for biosensing applications. In particular, mesoporous TiO2 materials with uniform, well-organized pores and high surface areas typically exhibit superior biosensing performance, which includes high sensitivity, broad linear response, low detection limit, good reproducibility, and high specificity. Therefore, the development of biosensors based on mesoporous TiO2 has significantly intensified in recent years. In this review, the expansion and advancement of mesoporous TiO2-based biosensors for glucose detection, hydrogen peroxide detection, alpha-fetoprotein detection, immobilization of enzymes, proteins, and bacteria, cholesterol detection, pancreatic cancer detection, detection of DNA damage, kanamycin detection, hypoxanthine detection, and dichlorvos detection are summarized. Finally, the future perspective and research outlook on the utilization of mesoporous TiO2-based biosensors for the practical diagnosis of diseases and detection of hazardous substances are also given.


Subject(s)
Biosensing Techniques , Titanium/chemistry , Humans , Materials Testing , Particle Size , Porosity , Smart Materials , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...