Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 3: 211-217, 2022.
Article in English | MEDLINE | ID: mdl-36819935

ABSTRACT

Goal: Accounting for gait individuality is important to positive outcomes with wearable robots, but manually tuning multi-activity models is time-consuming and not viable in a clinic. Generalizations can possibly be made to predict gait individuality in unobserved conditions. Methods: Kinematic individuality-how one person's joint angles differ from the group-is quantified for every subject, joint, ambulation mode (walking, running, stair ascent, and stair descent), and intramodal task (speed, incline) in an open-access dataset with 10 able-bodied subjects. Four N-way ANOVAs test how prediction methods affect the fit to experimental data between and within ambulation modes. We test whether walking individuality (measured at a single speed on level ground) carries across modes, or whether a mode-specific prediction (based on a single task for each mode) is significantly more effective. Results: Kinematic individualization improves fit across joint and task if we consider each mode separately. Across all modes, tasks, and joints, modal individualization improved the fit in 81% of trials, improving the fit on average by 4.3[Formula: see text] across the gait cycle. This was statistically significant at all joints for walking and running, and half the joints for stair ascent/descent. Conclusions: For walking and running, kinematic individuality can be easily generalized within mode, but the trends are mixed on stairs depending on joint.

2.
Sci Data ; 8(1): 282, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711856

ABSTRACT

Human locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


Subject(s)
Gait , Lower Extremity/physiology , Running/physiology , Walking/physiology , Adult , Biomechanical Phenomena , Female , Humans , Kinetics , Locomotion/physiology , Male , Middle Aged , Sitting Position , Stair Climbing/physiology , Standing Position , Young Adult
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2944-2954, 2020 12.
Article in English | MEDLINE | ID: mdl-33232241

ABSTRACT

Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation.


Subject(s)
Amputees , Artificial Limbs , Ankle , Ankle Joint , Biomechanical Phenomena , Gait , Humans , Prosthesis Design , Walking
4.
Article in English | MEDLINE | ID: mdl-33123409

ABSTRACT

Individuality in clinical gait analysis is often quantified by an individual's kinematic deviation from the norm, but it is unclear how these deviations generalize across different walking speeds and ground slopes. Understanding individuality across tasks has important implications in the tuning of prosthetic legs, where clinicians have limited time and resources to personalize the kinematic motion of the leg to therapeutically enhance the wearer's gait. This study seeks to determine an efficient way to predictively model an individual's kinematics over a continuous range of slopes and speeds given only one personalized task at level ground. We were able to predict the kinematics of able-bodied individuals at a wide variety of conditions that were not specifically tuned. Applied to 10 human subjects, the individualization method reduced the RMSE between the model and subject's kinematics over all tasks by an average of 2% (max 52%) at the ankle, 27% (max 59%) at the knee, and 45% (max 83%) at the hip. Our results indicate that knowing how an individual subject differs from the average subject at level ground alone is enough information to improve kinematic predictions across all tasks. This research offers a new method for personalizing robotic prosthetic legs over a variety of tasks without the need of an engineer, which could make these complex devices more clinically viable.

5.
IEEE Access ; 7: 109840-109855, 2019.
Article in English | MEDLINE | ID: mdl-31656719

ABSTRACT

Although there has been recent progress in control of multi-joint prosthetic legs for rhythmic tasks such as walking, control of these systems for non-rhythmic motions and general real-world maneuvers is still an open problem. In this article, we develop a new controller that is capable of both rhythmic (constant-speed) walking, transitions between speeds and/or tasks, and some common volitional leg motions. We introduce a new piecewise holonomic phase variable, which, through a finite state machine, forms the basis of our controller. The phase variable is constructed by measuring the thigh angle, and the transitions in the finite state machine are formulated through sensing foot contact along with attributes of a nominal reference gait trajectory. The controller was implemented on a powered knee-ankle prosthesis and tested with a transfemoral amputee subject, who successfully performed a wide range of rhythmic and non-rhythmic tasks, including slow and fast walking, quick start and stop, backward walking, walking over obstacles, and kicking a soccer ball. Use of the powered leg resulted in clinically significant reductions in amputee compensations for rhythmic tasks (including vaulting and hip circumduction) when compared to use of the take-home passive leg. In addition, considerable improvements were also observed in the performance for non-rhythmic tasks. The proposed approach is expected to provide a better understanding of rhythmic and non-rhythmic motions in a unified framework, which in turn can lead to more reliable control of multi-joint prostheses for a wider range of real-world tasks.

6.
IEEE J Transl Eng Health Med ; 6: 2600209, 2018.
Article in English | MEDLINE | ID: mdl-30546971

ABSTRACT

This paper presents a potential solution to the challenge of configuring powered knee-ankle prostheses in a clinical setting. Typically, powered prostheses use impedance-based control schemes that contain several independent controllers which correspond to consecutive periods along the gait cycle. This control strategy has numerous control parameters and switching rules that are generally tuned by researchers or technicians and not by a certified prosthetist. We propose an intuitive clinician control interface (CCI) in which clinicians tune a powered knee-ankle prosthesis based on a virtual constraint control scheme, which tracks desired periodic joint trajectories based on a continuous measurement of the phase (or progression) of gait. The interface derives virtual constraints from clinician-designed joint kinematic trajectories. An experiment was conducted in which a certified prosthetist used the control interface to configure a powered knee-ankle prosthesis for a transfemoral amputee subject during level-ground walking trials. While it usually takes engineers hours of tuning individual parameters by trial and error, the CCI allowed the clinician to tune the powered prosthesis controller in under 10 min. This allowed the clinician to improve several amputee gait outcome metrics, such as gait symmetry. These results suggest that the CCI can improve the clinical viability of emerging powered knee-ankle prostheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...