Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 12(5): 598-607, 2012 May.
Article in English | MEDLINE | ID: mdl-22496056

ABSTRACT

Morphogen gradients have been associated with differential gene expression and are implicated in the triggering and regulation of developmental biological processes. This study focused on creating morphogenic gradients through the thickness of hydrospun scaffolds. Specifically, electrospun poly(ε-caprolactone) fibers were loaded with all-trans-retinoic acid (ATRA), and designed to release ATRA at a predetermined rate. Multilayered scaffolds designed to present varied initial ATRA concentrations were then exposed to flow conditions in a bioreactor. Gradient formation was verified by a simple convection-diffusion mathematical model approving establishment of a continuous solute gradient across the scaffold. The biological value of the designed gradients in scaffolds was evaluated by monitoring the fate of murine embryonal carcinoma cells embedded within the scaffolds. Cell differentiation within the different layers matched the predictions set forth by the theoretical model, in accordance with the ATRA gradient formed across the scaffold. This tool bears powerful potential in establishing in vitro simulation models for better understanding the inner workings of the embryo.


Subject(s)
Embryonal Carcinoma Stem Cells/drug effects , Neurons/drug effects , Polyesters/pharmacology , Stem Cells/drug effects , Tretinoin/pharmacology , Animals , Biomarkers/metabolism , Bioreactors , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Electrochemical Techniques , Embryo, Mammalian , Embryonal Carcinoma Stem Cells/cytology , Embryonal Carcinoma Stem Cells/metabolism , Embryonic Development , Gene Expression Regulation, Developmental/drug effects , Mice , Models, Biological , Neurons/cytology , Neurons/metabolism , Polyesters/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Tissue Scaffolds , Tretinoin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...