Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 10(7): 1126-1137, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31391885

ABSTRACT

Per-Arnt-Sim (PAS) domains are key regions that occur in different regulatory proteins from all kingdoms of life. PAS domains show a remarkably conserved structural scaffold, despite a highly variable primary sequence. In this study we have attempted to address some of the gaps in knowledge regarding the druggability of PAS-A domains, differences in structure and dynamics within the PAS domain family and how this affects the druggability potential, as well as give insight into the druggability of steroid receptor coactivators and putative binding modes of the NCOA1. Investigations were performed through a range of computational methods including molecular docking studies, atomistic molecular dynamics simulations, and hotspot mapping. Atomistic molecular dynamics simulations show that the function of the AhR PAS-B domain is regulated by the dynamics of the highly conserved tyrosine Y322 residue, which acts as a "gatekeeper" controlling the access to the binding cavity and finely tuning the binding affinity. Furthermore, the transition between the partially unfolded and helical conformation of the loop1 segment within PAS-B domains was shown to be essential for the generation of "druggable" sites, especially for the NCOA1 PAS-B domain. Finally, our simulations indicated the undruggability of PAS-A domains, caused by the inherent characteristics of their putative binding sites. In conclusion, this work emphasises the role of intrinsic dynamics in tuning the druggability of PAS-B domains and shows that PAS-B domains of steroid receptor coactivators, such as NCOA1, can be targeted by small molecule ligands, which highlights the potential of developing new therapeutics designed to target these coactivators using structure-based approaches.

2.
Redox Biol ; 15: 557-568, 2018 05.
Article in English | MEDLINE | ID: mdl-29433022

ABSTRACT

Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.


Subject(s)
Aldehyde Dehydrogenase/genetics , Cysteine/analogs & derivatives , Glucosamine/analogs & derivatives , Oxidative Stress/genetics , Staphylococcus aureus/metabolism , Aldehyde Dehydrogenase/chemistry , Anti-Bacterial Agents/chemistry , Catalytic Domain , Cysteine/biosynthesis , Cysteine/genetics , Glucosamine/biosynthesis , Glucosamine/genetics , Hydrogen Peroxide/chemistry , Hypochlorous Acid/toxicity , Molecular Docking Simulation , Oxidation-Reduction , Oxidative Stress/drug effects , Protein S/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...