Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(31): 76263-76282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37247144

ABSTRACT

Cultivation of microalgae and controlling its growth and performance in closed photobioreactors (PBRs) are easier than open pond systems for wastewater treatment. The performance of PBRs is influenced by geometry, hydrodynamic behavior, and mass transfer. Horizontal and vertical configurations as common designs of PBR are reviewed based on their features, advantages, and disadvantages. However, vertically operated PBRs like bubble columns are preferably used for utility-scale applications of microalgae-based processes. Moreover, an appropriate reactor design reduces the inhibitory effect of dissolved oxygen concentration produced by microalgae and consequently increases the level of available CO2 in the medium. Medium properties, superficial gas velocity, gas holdup, bubble sizes, shear stress, mixing time, sparger design, and the ratio of inner diameter to effective height are shown to influence the overall volumetric mass transfer coefficient (KLa) and PBR's performance. The vertical PBRs like bubble columns provide a high mass transfer, a short liquid circulation time, and a long frequency of light/dark cycle for utility application of microalgae. Different flow regimes are obtained in PBRs based on the gas flow rate, inner diameter, and medium properties. Hydraulic retention time as the main operational parameter is determined in a batch mode for continuous wastewater treatment.


Subject(s)
Microalgae , Photobioreactors , Hydrodynamics , Biomass
2.
Chemosphere ; 272: 129878, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35534965

ABSTRACT

Nitrogen and phosphorus pollution can cause eutrophication, resulting in ecosystem disruption. Wastewater treatment systems employing microalgae-bacteria consortia have the potential to enhance the nutrient removal efficiency from wastewater through mutual interaction and synergetic effects. The knowledge and control of the mechanisms involved in microalgae-bacteria interaction could improve the system's ability to transform and recover nutrients. In this review, a critical evaluation of recent literature was carried out to synthesize knowledge related to mechanisms of interaction between microalgae and bacteria consortia for nutrient removal from wastewater. It is now established that microalgae can produce oxygen through photosynthesis for bacteria and, in turn, bacteria supply the required metabolites and inorganic carbon source for algae growth. Here we highlight how the interaction between microalgae and bacteria is highly dependent on the nitrogen species in the wastewater. When the nitrogen source is ammonium, the generated oxygen by microalgae has a positive influence on nitrifying bacteria. When the nitrogen source is nitrate, the oxygen can have an inhibitory effect on denitrifying bacteria. However, some strains of microalgae have the capability to supply hydrogen gas for hydrogenotrophic denitrifiers as an energy source. Recent literature on biogranulation of microalgae and bacteria and its application for nutrient removal and biomass recovery is also discussed as a promising approach. Significant research challenges remain for the integration of microalgae-bacteria consortia into wastewater treatment processes including microbial community control and process stability over long time horizons.


Subject(s)
Microalgae , Bacteria/metabolism , Biomass , Ecosystem , Microalgae/metabolism , Nitrogen/metabolism , Nutrients , Oxygen , Phosphorus/metabolism , Wastewater
3.
J Environ Manage ; 268: 110674, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32383647

ABSTRACT

To avoid hydrogen injection and to enhance the settleability of microbial biomass in biological treatment of nitrate-contaminated drinking water resources, a new method based on granulation of a mixture of hydrogen consumer denitrifiers (HCD) and microalgae is introduced. Decreasing hydraulic retention time (HRT) was applied as the selection pressure in an up-flow photobioreactor to increase the speed of granulation and nitrate removal under autotrophic condition during a 50-day operation. Formation of granules occurred at three phases including granule nucleation, growth of granule, and mature granule, with decreasing the values of ζ-potential from -19 mV to -4 mV. Enhancement of microbial attachment within granule formation could reduce the presence of total suspended solids in the effluent. Developed granules of HCD and microalgae could settle down with velocity of 40 ± 0.6 m/h when reaching the average size of 1.2 mm at day 40. Complete NO3--N removal from drinking water was achieved from the initial stage of granulation until the end of operation at all HRTs of 3 days-5 h. The clear treated water was obtained at the growth phase when the chemical oxygen demand and phosphate were undetectable. Therefore, the application of HCD-microalgae granule is a promising way for nitrate removal from water.


Subject(s)
Drinking Water , Microalgae , Water Purification , Autotrophic Processes , Bioreactors , Denitrification , Hydrogen , Nitrates
4.
Environ Sci Pollut Res Int ; 26(2): 1124-1141, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28567682

ABSTRACT

This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.


Subject(s)
Drinking Water/chemistry , Nitrates/analysis , Water Pollutants/analysis , Water Purification/methods , Denitrification
5.
Environ Sci Pollut Res Int ; 25(27): 27471-27482, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30043348

ABSTRACT

Optimizing the mono-cultivation and mixed cultivation of Chlamydomonas reinhardtii, Chlorella vulgaris, and an Ettlia sp. was evaluated for treating nitrate-contaminated groundwater and biomass production. Ettlia sp. showed the highest nutrient assimilation and growth rate among the three microalgae during bioremediation. Light-dark cycle was the effective condition for nutrient removal and COD mitigation by microalgae. Mixed microalgae with a larger presence of the Ettlia sp. exhibited the highest biomass productivity, nitrate-nitrogen, and phosphate-phosphorus removal rates of 0.21 g/L/d, 16.6, and 3.06 mg/L/d, respectively. An N:P mass ratio of 5 was necessary to increase the mixed-microalgal performance. The settling efficiency of the mixed microalgae increased up to 0.55 when using pH modulation during 30 min. Therefore, applying an Ettlia sp.-dominant consortium was the optimum strategy for the bioremediation of nitrate-contaminated groundwater in 3 days.


Subject(s)
Chlamydomonas/physiology , Chlorella vulgaris/physiology , Chlorella/physiology , Microalgae/physiology , Nitrates/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Biomass , Groundwater , Nitrogen/metabolism , Phosphates/metabolism , Phosphorus/metabolism
6.
Bioresour Technol ; 244(Pt 1): 785-792, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28822952

ABSTRACT

The effects of phosphorus concentration on the cell growth, nutrient assimilation, photosynthetic parameters, and biomass recovery of Ettlia sp. were evaluated with batch experiments using groundwater, 50mg/L of N-NO3-, and different concentrations of P-PO43-: 0.5, 2.5, 5, and 10mg/L. The maximum biomass productivity and phosphorus removal rate were 0.2g/L/d and 5.95mg/L/d, respectively, with the highest phosphorus concentration of 10mg/L. However, a phosphorus concentration of 5mg/L (N:P=10) was sufficient to ensure an effective nitrogen removal rate of 11mg/L/d, maximum growth rate of 0.88/d, and biomass recovery of 0.72. The appropriate hydraulic retention time was considered as 4days on a large scale to meet the effluent limitation demands of water. While nitrogen depletion had a significant effect on the photosynthetic parameters and ratio of chlorophyll a to dry cell weight during the stationary phase, the effect of phosphorus was negligible during the cultivation.


Subject(s)
Biomass , Groundwater , Phosphorus , Chlorophyll , Chlorophyll A , Nitrogen
7.
Environ Technol ; 36(13-16): 1751-8, 2015.
Article in English | MEDLINE | ID: mdl-25609228

ABSTRACT

This study investigated the long-term filtration of mesh filter with the formed dynamic membrane in bioreactor. The trend of transmembrane pressure (TMP) variations highly corresponded to the thickness and compactness index of dynamic membrane. The dynamic membrane was fractionated by applying two cleaning protocols, that is, rinsing and chemical cleaning. The desorbed fraction, consisting of soluble microbial products (>70%), provided a stickiness surface for formation of consecutive biomass layer which featured a high concentration of extracellular polymeric substances (>75%). The chemical oxygen demand (COD) removal was 70%, 89%, and 92% for period of 0-26, 26-49, and 49-67 day, respectively, which indicated that further development of dynamic membrane increased the TMP without improvement in the effluent quality (TMP: 50-200 mbar, COD removal: 89%; TMP: 200-600 mbar, COD removal: 92%). The average NH4+-N and TN removal was about 76% and 21%, respectively. The effluent turbidity fell less than 2 NTU after 26 days of filtration.


Subject(s)
Bacteria/isolation & purification , Bioreactors/microbiology , Equipment Contamination/prevention & control , Membranes, Artificial , Rheology/instrumentation , Ultrafiltration/instrumentation , Equipment Design , Equipment Failure Analysis , Porosity , Rheology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...