Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 124(17): 171103, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32412268

ABSTRACT

With the first detection of gravitational waves from a binary system of neutron stars GW170817, a new window was opened to study the properties of matter at and above nuclear-saturation density. Reaching densities a few times that of nuclear matter and temperatures up to 100 MeV, such mergers also represent potential sites for a phase transition (PT) from confined hadronic matter to deconfined quark matter. While the lack of a postmerger signal in GW170817 has prevented us from assessing experimentally this scenario, two theoretical studies have explored the postmerger gravitational-wave signatures of PTs in mergers of a binary system of neutron stars. We here extend and complete the picture by presenting a novel signature of the occurrence of a PT. More specifically, using fully general-relativistic hydrodynamic simulations and employing a suitably constructed equation of state that includes a PT, we present the occurrence of a "delayed PT," i.e., a PT that develops only some time after the merger and produces a metastable object with a quark-matter core, i.e., a hypermassive hybrid star. Because in this scenario, the postmerger signal exhibits two distinct fundamental gravitational-wave frequencies-before and after the PT-the associated signature promises to be the strongest and cleanest among those considered so far, and one of the best signatures of the production of quark matter in the present Universe.

2.
Phys Rev Lett ; 122(6): 061101, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822043

ABSTRACT

Merging binaries of neutron-stars are not only strong sources of gravitational waves, but also have the potential of revealing states of matter at densities and temperatures not accessible in laboratories. A crucial and long-standing question in this context is whether quarks are deconfined as a result of the dramatic increase in density and temperature following the merger. We present the first fully general-relativistic simulations of merging neutron-stars including quarks at finite temperatures that can be switched off consistently in the equation of state. Within our approach, we can determine clearly what signatures a quark-hadron phase transition would leave in the gravitational-wave signal. We show that if after the merger the conditions are met for a phase transition to take place at several times nuclear saturation density, they would lead to a postmerger signal considerably different from the one expected from the inspiral, that can only probe the hadronic part of the equations of state, and to an anticipated collapse of the merged object. We also show that the phase transition leads to a very hot and dense quark core that, when it collapses to a black hole, produces a ringdown signal different from the hadronic one. Finally, in analogy with what is done in heavy-ion collisions, we use the evolution of the temperature and density in the merger remnant to illustrate the properties of the phase transition in a QCD phase diagram.

3.
Phys Rev Lett ; 120(26): 261103, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004744

ABSTRACT

We explore in a parameterized manner a very large range of physically plausible equations of state (EOSs) for compact stars for matter that is either purely hadronic or that exhibits a phase transition. In particular, we produce two classes of EOSs with and without phase transitions, each containing one million EOSs. We then impose constraints on the maximum mass (M<2.16 M_{⊙}) and on the dimensionless tidal deformability (Λ[over ˜]<800) deduced from GW170817, together with recent suggestions of lower limits on Λ[over ˜]. Exploiting more than 10^{9} equilibrium models for each class of EOSs, we produce distribution functions of all the stellar properties and determine, among other quantities, the radius that is statistically most probable for any value of the stellar mass. In this way, we deduce that the radius of a purely hadronic neutron star with a representative mass of 1.4 M_{⊙} is constrained to be 12.00375, again at a 2σ level. On the other hand, because EOSs with a phase transition allow for very compact stars on the so-called "twin-star" branch, small radii are possible with such EOSs although not probable, i.e., 8.5335.5 at a 3σ level. Finally, since these EOSs exhibit upper limits on Λ[over ˜], the detection of a binary with a total mass of 3.4 M_{⊙} and Λ[over ˜]_{1.7}>461 can rule out twin-star solutions.

4.
Phys Rev Lett ; 120(4): 041101, 2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29437407

ABSTRACT

Inferring the properties of dense matter is one of the most exciting prospects from the measurement of gravitational waves from neutron star mergers. However, it requires reliable numerical simulations that incorporate viscous dissipation and energy transport as these can play a significant role in the survival time of the post-merger object. We calculate time scales for typical forms of dissipation and find that thermal transport and shear viscosity will not be important unless neutrino trapping occurs, which requires temperatures above 10 MeV and gradients over length scales of 0.1 km or less. On the other hand, if direct-Urca processes remain suppressed, leaving modified-Urca processes to establish flavor equilibrium, then bulk viscous dissipation could provide significant damping to density oscillations right after merger. When comparing with data from state-of-the-art merger simulations, we find that the bulk viscosity takes values close to its resonant maximum in a typical merger, motivating a more careful assessment of the role of bulk viscous dissipation in the gravitational-wave signal from merging neutron stars.

5.
Phys Rev Lett ; 120(3): 031102, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400541

ABSTRACT

We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

6.
Rep Prog Phys ; 80(9): 096901, 2017 09.
Article in English | MEDLINE | ID: mdl-28319032

ABSTRACT

In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

7.
Living Rev Relativ ; 19(1): 2, 2016.
Article in English | MEDLINE | ID: mdl-28190970

ABSTRACT

A numerical-relativity calculation yields in general a solution of the Einstein equations including also a radiative part, which is in practice computed in a region of finite extent. Since gravitational radiation is properly defined only at null infinity and in an appropriate coordinate system, the accurate estimation of the emitted gravitational waves represents an old and non-trivial problem in numerical relativity. A number of methods have been developed over the years to "extract" the radiative part of the solution from a numerical simulation and these include: quadrupole formulas, gauge-invariant metric perturbations, Weyl scalars, and characteristic extraction. We review and discuss each method, in terms of both its theoretical background as well as its implementation. Finally, we provide a brief comparison of the various methods in terms of their inherent advantages and disadvantages.

8.
Phys Rev Lett ; 113(9): 091104, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25215972

ABSTRACT

Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

9.
Phys Rev Lett ; 104(22): 221101, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20867159

ABSTRACT

The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

10.
Phys Rev Lett ; 105(26): 261101, 2010 Dec 31.
Article in English | MEDLINE | ID: mdl-21231639

ABSTRACT

To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates. We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with different compactnesses, C=0.12 and C=0.14, and compare them with a tidal extension of the effective-one-body (EOB) model. The typical numerical phasing errors over the ≃22   GW cycles are Δϕ≃±0.24   rad. By calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast, the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to the numerical waveforms by several radians.

11.
Phys Rev Lett ; 99(4): 041102, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678346

ABSTRACT

The final evolution of a binary-black-hole system gives rise to a recoil velocity if an asymmetry is present in the emitted gravitational radiation. Measurements of this effect for nonspinning binaries with unequal masses have pointed out that kick velocities approximately 175 km/s can be reached for a mass ratio approximately 0.36. However, a larger recoil can be obtained for equal-mass binaries if the asymmetry is provided by the spins. Using two independent methods we show that the merger of such binaries yields velocities as large as approximately 440 km/s for black holes having unequal spins that are antialigned and parallel to the orbital angular momentum.

12.
Phys Rev Lett ; 97(14): 141101, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-17155236

ABSTRACT

A paradigm deeply rooted in modern numerical relativity calculations prescribes the removal of those regions of the computational domain where a physical singularity may develop. We here challenge this paradigm by performing three-dimensional simulations of the collapse of uniformly rotating stars to black holes without excision. We show that this choice, combined with suitable gauge conditions and the use of minute numerical dissipation, improves dramatically the long-term stability of the evolutions. In turn, this allows for the calculation of the waveforms well beyond what was previously possible, providing information on the black-hole ringing and setting a new mark on the present knowledge of the gravitational-wave emission from the stellar collapse to a rotating black hole.

13.
Phys Rev Lett ; 89(11): 114501, 2002 Sep 09.
Article in English | MEDLINE | ID: mdl-12225141

ABSTRACT

In Newtonian and relativistic hydrodynamics the Riemann problem determines the evolution of a fluid which is initially characterized by two states having different rest-mass density, pressure, and velocity. When the fluid is allowed to relax, one of three possible wave patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a relativistic Riemann problem when velocities tangential to the initial discontinuity are present. A smooth transition from one wave pattern to another can be produced by varying the initial tangential velocities while maintaining the initial states unmodified. These special relativistic effects are produced by the Lorentz factors and do not have a Newtonian counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL
...