Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 61(23): 10415-10439, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30130103

ABSTRACT

The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclinical in vivo animal model upon oral administration.


Subject(s)
Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pyridines/administration & dosage , Pyridines/pharmacology , Administration, Oral , Animals , Biological Availability , Drug Evaluation, Preclinical , Humans , Mice , Pyridines/pharmacokinetics , Th17 Cells/drug effects , Th17 Cells/metabolism
2.
Dig Liver Dis ; 44(2): 134-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21782536

ABSTRACT

BACKGROUND: Cholangiocarcinoma cells over-express oestrogen receptor-ß, which displays anti-proliferative and pro-apoptotic effects. AIM: To evaluate the effects of a newly developed and highly selective oestrogen receptor-ß agonist (KB9520) on experimental intrahepatic cholangiocarcinoma. METHODS: In vitro, the effects of KB9520 on apoptosis and proliferation of HuH-28 cells, HuH-28 cells with selective oestrogen receptor-ß silencing (by small interfering RNA), HepG2 cells (oestrogen receptor-α and oestrogen receptor-ß negative) and HepER3 cells (HepG2 cells transformed to stably express oestrogen receptor-α) were evaluated. In vivo, the effects of KB9520 on experimental intrahepatic cholangiocarcinoma, induced by thioacetamide administration were tested. RESULTS: In vitro, KB9520 induced apoptosis and inhibited proliferation of HuH-28 cells. KB9520 effects were absent in cells lacking oestrogen receptor-α and ß (HepG2) and in cells expressing only oestrogen receptor-α (HepER3); its pro-apoptotic effect was impaired in cells where oestrogen receptor-ß expression was decreased by specific small interfering RNA. In vivo, KB9520 inhibited experimental intrahepatic cholangiocarcinoma development in thioacetamide-treated rats and promoted tumour regression in rats where tumour was already established. In treated animals, tumour areas showed reduced proliferation but increased apoptosis. CONCLUSIONS: KB9520 induced apoptosis in cholangiocarcinoma by selectively acting on oestrogen receptor-ß, suggesting that oestrogen receptor-ß selective agonists may be a novel and effective therapeutic option for the medical treatment of intrahepatic cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Cholangiocarcinoma/drug therapy , Estrogen Receptor beta/agonists , Liver Neoplasms/drug therapy , Neoplasms, Experimental/drug therapy , Selective Estrogen Receptor Modulators/therapeutic use , Animals , Apoptosis , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Blotting, Western , Cell Line, Tumor , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Estrogen Receptor beta/biosynthesis , Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic , Humans , In Situ Nick-End Labeling , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , RNA, Neoplasm , Rats , Rats, Wistar , Treatment Outcome
3.
J Med Chem ; 47(17): 4213-30, 2004 Aug 12.
Article in English | MEDLINE | ID: mdl-15293993

ABSTRACT

Hepatic blockade of glucocorticoid receptors (GR) suppresses glucose production and thus decreases circulating glucose levels, but systemic glucocorticoid antagonism can produce adrenal insufficiency and other undesirable side effects. These hepatic and systemic responses might be dissected, leading to liver-selective pharmacology, when a GR antagonist is linked to a bile acid in an appropriate manner. Bile acid conjugation can be accomplished with a minimal loss of binding affinity for GR. The resultant conjugates remain potent in cell-based functional assays. A novel in vivo assay has been developed to simultaneously evaluate both hepatic and systemic GR blockade; this assay has been used to optimize the nature and site of the linker functionality, as well as the choice of the GR antagonist and the bile acid. This optimization led to the identification of A-348441, which reduces glucose levels and improves lipid profiles in an animal model of diabetes.


Subject(s)
Bridged-Ring Compounds/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/chemical synthesis , Liver/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Animals , Bile Acids and Salts/chemistry , Binding Sites , Bridged-Ring Compounds/chemistry , Bridged-Ring Compounds/pharmacology , CHO Cells , Cells, Cultured , Computer Simulation , Cricetinae , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 2/blood , Glucose/biosynthesis , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , Male , Mice , Models, Molecular , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiology , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...