Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 125(13): 133206, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029453

ABSTRACT

We report a full dimensional, ab initio-based global potential energy surface (PES) and dipole moment surface for Cl-H2O. Both surfaces are symmetric with respect to interchange of the H atoms. The PES is a fit to thousands of electronic energies calculated using the coupled-cluster method [CCSD(T)] with a moderately large basis (aug-cc-pVTZ). Vibrational energies and wave functions are accurately obtained using MULTIMODE. The wave function and dipole moment surface are used to calculate and analyze the pure infrared spectrum at 0 K which is compared with experiment. Vibrational energies and the infrared spectra for DOD and HOD/DOH are also presented.

2.
J Chem Phys ; 124(13): 131102, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16613440

ABSTRACT

We report a full dimensional ab initio-based global potential energy surface (PES) and dipole moment surface (DMS) for Cl(-)H(2)O. Both surfaces are symmetric with respect to interchange of the H atoms. The PES is a fit to thousands of electronic energies calculated using the coupled-cluster method (CCSD(T)) with a moderately large basis (aug-cc-pVTZ). The infrared spectrum and vibrational dynamics are reported and compared to experiment. These results are analyzed by examination of wave function and the dipole surface.

3.
J Phys Chem A ; 110(16): 5464-7, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623476

ABSTRACT

We report full-dimensional calculations of vibrational energies of trans-C2H2(A) using the code MULTIMODE and with a full-dimensional potential energy surface obtained by fitting singles and doubles coupled-cluster equations-of-motion (EOM-CCSD) energies using a [3s 2p 1d] atomic natural orbital basis. The EOM-CCSD calculations were done with the code "ACES II". We compare the properties of the potential surface to previous calculations at the trans minimum and also compare the vibrational energies to experimental ones.

4.
J Chem Phys ; 122(11): 114313, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15836221

ABSTRACT

We report quasiclassical trajectory calculations of the dynamics of the two reaction channels of formaldehyde dissociation on a global ab initio potential energy surface: the molecular channel H(2)CO-->H(2) + CO and the radical H(2)CO-->H + HCO. For the molecular channel, it is confirmed that above the threshold of the radical channel a second, intramolecular hydrogen abstraction pathway is opened to produce CO with low rotation and vibrationally hot H(2). The low-j(CO) and high-nu(H(2) ) products from the second pathway increase with the total energy. The competition between the molecular and radical pathways is also studied. It shows that the branching ratio of the molecular products decreases with increasing energy, while the branching ratio of the radical products increases. The results agree well with very recent velocity-map imaging experiments of Suits and co-workers and solves a mystery first posed by Moore and co-workers. For the radical channel, we present the translational energy distributions and HCO rotation distributions at various energies. There is mixed agreement with the experiments of Wittig and co-workers, and this provides an indirect confirmation of their speculation that the triplet surface plays a role in the formation of the radical products.

5.
J Chem Phys ; 120(15): 7018-23, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15267602

ABSTRACT

We report quantum and quasiclassical calculations of proton transfer in the reaction H(3)O(+)+H(2)O in three degrees of freedom, the two OH(+) bond lengths and the OH(+)O angle. The reduced dimensional potential energy surface is obtained from the full dimensional OSS3(p) energy function of H(5)O(2) (+) [L. Ojamae, I. Shavitt, and S. J. Singer, J. Chem. Phys. 109, 5547 (1998)], with an additional long-range correction to reproduce the correct ion-molecule interaction. This surface is used to perform both quasiclassical trajectory and quantum reactive scattering calculations of the zero total angular momentum cumulative reaction probability and cross sections for initial rotational states 0, 1, and 2. Comparison of these quantities are made to assess the importance of quantum effects in this reduced dimensional reaction. Additional quasiclassical cross sections are calculated to obtain the thermal rate constant for the reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...