Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Biol ; 32(7): 1511-1522.e6, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35245459

ABSTRACT

Most antiviral proteins recognize specific features of viruses. In contrast, the recently described antiviral factor retroCHMP3 interferes with the "host endosomal complexes required for transport" (ESCRT) pathway to inhibit the budding of enveloped viruses. RetroCHMP3 arose independently on multiple occasions via duplication and truncation of the gene encoding the ESCRT-III factor CHMP3. However, since the ESCRT pathway is essential for cellular membrane fission reactions, ESCRT inhibition is potentially cytotoxic. This raises fundamental questions about how hosts can repurpose core cellular functions into antiviral functions without incurring a fitness cost due to excess cellular toxicity. We reveal the evolutionary process of detoxification for retroCHMP3 in New World monkeys using a combination of ancestral reconstructions, cytotoxicity, and virus release assays. A duplicated, full-length copy of retroCHMP3 in the ancestors of New World monkeys provides modest inhibition of virus budding while exhibiting subtle cytotoxicity. Ancient retroCHMP3 then accumulated mutations that reduced cytotoxicity but preserved virus inhibition before a truncating stop codon arose in the more recent ancestors of squirrel monkeys, resulting in potent inhibition. In species where full-length copies of retroCHMP3 still exist, their artificial truncation generated potent virus-budding inhibitors with little cytotoxicity, revealing the potential for future antiviral defenses in modern species. In addition, we discovered that retroCHMP3 restricts LINE-1 retrotransposition, revealing how different challenges to genome integrity might explain multiple independent origins of retroCHMP3 in different species to converge on new immune functions.


Subject(s)
Virus Release , Viruses , Animals , Antiviral Agents , Cytokinesis , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Primates/genetics
3.
Cell ; 184(21): 5419-5431.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597582

ABSTRACT

Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport/metabolism , HIV-1/physiology , Viral Envelope Proteins/metabolism , Virus Release , Animals , Cell Death , Cell Survival , Endosomal Sorting Complexes Required for Transport/ultrastructure , HEK293 Cells , HeLa Cells , Humans , Interferons/metabolism , Mammals/genetics , Mice, Inbred C57BL , RNA/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/metabolism
4.
J Biol Chem ; 297(2): 100975, 2021 08.
Article in English | MEDLINE | ID: mdl-34284061

ABSTRACT

Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1-NEDD4L WW3 interaction accounts for most of the AMOT-NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW-PPxY core interaction account for the unusually high affinity of the AMOT PPxY1-NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.


Subject(s)
Angiomotins/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Nedd4 Ubiquitin Protein Ligases/metabolism , Virus Assembly , Amino Acid Motifs , Cell Line , Endosomal Sorting Complexes Required for Transport/metabolism , HIV Infections/pathology , HIV Infections/transmission , HIV Infections/virology , HIV-1/isolation & purification , HIV-1/pathogenicity , Humans , Protein Domains
5.
J Exp Med ; 214(5): 1239-1248, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28396461

ABSTRACT

Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population.


Subject(s)
Influenza A virus/immunology , Myxovirus Resistance Proteins/immunology , Nucleoproteins/genetics , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Female , Humans , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H7N7 Subtype/immunology , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza A virus/genetics , Influenza A virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Myxovirus Resistance Proteins/genetics
7.
J Virol ; 89(22): 11420-37, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26339054

ABSTRACT

UNLABELLED: Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE: SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human pathogen, causing high fever and joint pain, while SFV is a low-pathogenic model virus, albeit neuropathogenic in mice. We show that both SFV and CHIKV activate the prosurvival PI3K-Akt-mTOR pathway in cells but greatly differ in their capacities to do so: Akt is strongly and persistently activated by SFV infection but only moderately activated by CHIKV. We mapped this activation capacity to a region in nonstructural protein 3 (nsP3) of SFV and could functionally transfer this region to CHIKV. Akt activation is linked to the subcellular dynamics of replication complexes, which are efficiently internalized from the cell periphery for SFV but not CHIKV. This difference in signal pathway stimulation and replication complex localization may have implications for pathology.


Subject(s)
Chikungunya virus/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/genetics , Semliki forest virus/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Alphavirus Infections/virology , Androstadienes/pharmacology , Animals , Cell Line, Tumor , Chikungunya virus/genetics , Cricetinae , Enzyme Activation , Humans , Mice , Naphthyridines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Structure, Tertiary/genetics , Semliki forest virus/genetics , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Virus Internalization/drug effects , Virus Replication , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...