Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Glycoconj J ; 18(9): 649-59, 2001 Sep.
Article in English | MEDLINE | ID: mdl-12386452

ABSTRACT

Altered terminal glycosylation, with increased fucosylation and decreased sialylation is a hallmark of the cystic fibrosis (CF) glycosylation phenotype. Oligosaccharides purified from the surface membrane glycoconjugates of CF airway epithelial cells have the Lewis x, selectin ligand in terminal positions. This review is focused on the investigations of the glycoconjugates of the CF airway epithelial cell surface. Two of the major bacterial pathogens in CF, Pseudomonas aeruginosa and Haemophilus influenzae, have binding proteins which recognize fucose in alpha-1,3 linkage and asialoglycoconjugates. Therefore, consideration has been given to the possibility that the altered terminal glycosylation of airway epithelial glycoproteins in CF contributes to both the chronic infection and the robust, but ineffective, inflammatory response in the CF lung. Since the glycosylation phenotype of CF airway epithelial cells have been modulated by the expression of wtCFTR, the hypotheses which have been proposed to relate altered function of CFTR to the regulation of the glycosyltransferases are discussed. Understanding the effects of mutant CFTR on glycosylation may provide further insight into the regulation of glycoconjugate processing as well as new approaches to the therapy of CF.


Subject(s)
Cystic Fibrosis/metabolism , Respiratory System/metabolism , Animals , Carbohydrate Sequence , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fucose/metabolism , Fucosyltransferases/metabolism , Glycosylation , Haemophilus influenzae/metabolism , Humans , Molecular Sequence Data , Phenotype , Pseudomonas aeruginosa/metabolism , Respiratory System/pathology , Sialyltransferases/metabolism , trans-Golgi Network/metabolism
2.
Glycoconj J ; 17(6): 385-91, 2000 Jun.
Article in English | MEDLINE | ID: mdl-11294504

ABSTRACT

Cystic fibrosis (CF) has a characteristic glycosylation phenotype usually expressed as a decreased ratio of sialic acid to fucose. The glycosylation phenotype was found in CF/T1 airway epithelial cells (deltaF508/deltaF508). When these cells were transfected and were expressing high amounts of wtCFTR, as detected by Western blot analysis and in situ hybridization, the cell membrane glycoconjugates had an increased sialic acid content and decreased fucosyl residues in alpha1,3/4 linkage to antennary N-acetyl glucosamine (Fuc(alpha)1,3/4GlcNAc). After the expression of wtCFTR decreased, the amount of sialic acid and Fuc(alpha)1,3/4GlcNAc returned to levels shown by the parent CF cells. Sialic acid was measured by chemical analysis and Fuc(alpha)1,3/4GlcNAc was detected with a specific alpha1,3/4 fucosidase. CF and non-CF airway cells in primary culture also had a similar reciprocal relationship between fucosylation and sialylation. It is possible that the glycosylation phenotype is involved in the pathogenesis of CF lung disease by facilitating bacterial colonization and leukocyte recruitment.


Subject(s)
Cystic Fibrosis/metabolism , Trachea/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cells, Cultured , Cystic Fibrosis/etiology , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Fucose/metabolism , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Glycosylation , Humans , In Situ Hybridization , Mutation , N-Acetylneuraminic Acid/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...