Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Beilstein J Nanotechnol ; 12: 93-101, 2021.
Article in English | MEDLINE | ID: mdl-33564606

ABSTRACT

A freestanding ultrathin hybrid membrane was synthesized comprising two functional layers, that is, first, a carbon nanomembrane (CNM) produced by electron irradiation-induced cross-linking of a self-assembled monolayer (SAM) of 4'-nitro-1,1'-biphenyl-4-thiol (NBPT) and second, purple membrane (PM) containing genetically modified bacteriorhodopsin (BR) carrying a C-terminal His-tag. The NBPT-CNM was further modified to carry nitrilotriacetic acid (NTA) terminal groups for the interaction with the His-tagged PMs forming a quasi-monolayer of His-tagged PM on top of the CNM-NTA. The formation of the Ni-NTA/His-tag complex leads to the unidirectional orientation of PM on the CNM substrate. Electrophoretic sedimentation was employed to optimize the surface coverage and to close gaps between the PM patches. This procedure for the immobilization of oriented dense PM facilitates the spontaneous fusion of individual PM patches, forming larger membrane areas. This is, to our knowledge, the very first procedure described to induce the oriented fusion of PM on a solid support. The resulting hybrid membrane has a potential application as a light-driven two-dimensional proton-pumping membrane, for instance, for light-driven seawater desalination as envisioned soon after the discovery of PM.

2.
ACS Nano ; 14(7): 8181-8190, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32551529

ABSTRACT

Well-defined multiwalled carbon nanotube structures are generated on stainless steel AISI 304 (EN AW 1.4301) by chemical vapor deposition. Pulsed laser-induced dewetting (PLiD) of the surface, by 532 nm nanosecond laser pulses, is utilized for the preparation of metal oxide nanoparticle fields with a defined particle number per area. The reduction of the precursor particles is achieved in an Ar/H2 (10% H2) atmosphere at 750 °C, thereby generating catalytic nanoparticles (c-NPs) for carbon nanotube (CNT) growth. Ethylene is used as a precursor gas for CNT growth. CNT lengths and morphology are directly related to the c-NP aerial density, which is dependent on the number of dewetting cycles during the PLiD process. Within a narrow window of c-NP per area, vertically aligned carbon nanotubes of great lengths are obtained. For more intense laser treatments, three-dimensional dewetting occurs and results in the formation of cauliflower-like structures. The laser process enables the creation of all kinds of CNT morphologies nearby on the microscale.

3.
ACS Nano ; 14(8): 9972-9978, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32589396

ABSTRACT

Transmission electron cryo-microscopy (cryoEM) of vitrified biological specimens is a powerful tool for structural biology. Current preparation of vitrified biological samples starts off with sample isolation and purification, followed by the fixation in a freestanding layer of amorphous ice. Here, we demonstrate that ultrathin (∼10 nm) smart molecular nanosheets having specific biorecognition sites embedded in a biorepulsive layer covalently bound to a mechanically stable carbon nanomembrane allow for a much simpler isolation and structural analysis. We characterize in detail the engineering of these nanosheets and their biorecognition properties employing complementary methods such as X-ray photoelectron and infrared spectroscopy, atomic force microscopy as well as surface plasmon resonance measurements. The desired functionality of the developed nanosheets is demonstrated by in situ selection of a His-tagged protein from a mixture and its subsequent structural analysis by cryoEM.


Subject(s)
Carbon , Electrons , Cryoelectron Microscopy , Microscopy, Atomic Force , Microscopy, Electron, Transmission
4.
ACS Nano ; 13(6): 7185-7190, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31117383

ABSTRACT

In electron cryo-microscopy, structure determination of protein molecules is frequently hampered by adsorption of the particles to the support film material, typically amorphous carbon. Here, we report that pyrene derivatives with one or two polyglycerol (PG) side chains bind to the amorphous carbon films, forming a biorepulsive hydrogel layer so that the number of protein particles in the vitreous ice drastically increases. This approach could be extended by adding a hydrogel-functionalized carbon nanotube network (HyCaNet, the hydrogel again being formed from the PG-pyrene derivatives), which stabilized the protein-containing thin ice films during imaging with the electron beam. The stabilization resulted in reduced particle motion by up to 70%. These substrates were instrumental for determining the structure of a large membrane protein complex.


Subject(s)
Cryoelectron Microscopy/methods , Hydrogels/chemistry , Membrane Proteins/chemistry , Detergents/chemistry , Glycerol/chemistry , Membrane Proteins/ultrastructure , Nanotubes/chemistry , Polymers/chemistry , Protein Stability , Pyrenes/chemistry , Vitrification
5.
Macromol Biosci ; 19(5): e1800356, 2019 05.
Article in English | MEDLINE | ID: mdl-30840362

ABSTRACT

Living Micrococcus luteus (M. luteus) and Escherichia coli (E. coli) are encapsulated in poly(vinyl alcohol), poly(vinylpyrrolidone), hydroxypropyl cellulose, and gelatin by high-temperature spray drying. The challenge is the survival of the bacteria during the standard spray-drying process at temperatures of 150 °C (M. luteus) and 120 °C (E. coli). Raman imaging and transmission electron microscopy indicate encapsulated bacteria in hollow composite microparticles. The versatility of the spray-dried polymer bacteria microparticles is successfully proved by standard polymer solution-processing techniques such as electrospinning, even with harmful solvents, to water-insoluble polyacrylonitrile, polystyrene, poly(methyl methacrylate), and poly(vinyl butyrate) nanofiber nonwovens, which opens numerous new opportunities for novel applications.


Subject(s)
Cells, Immobilized , Escherichia coli , Microbial Viability , Micrococcus luteus , Nanofibers/chemistry , Polymers/chemistry , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Escherichia coli/cytology , Escherichia coli/metabolism , Micrococcus luteus/cytology , Micrococcus luteus/metabolism
6.
ACS Nano ; 11(6): 6467-6473, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28598595

ABSTRACT

We developed a method to improve specimen preparation for electron cryo-microscopy of membrane proteins. The method features a perforated hydrogel nanomembrane that stabilizes the thin film of aqueous buffer spanning the holes of holey carbon films, while at the same time preventing the depletion of protein molecules from these holes. The membrane is obtained by cross-linking of thiolated polyglycerol dendrimer films on gold, which self-perforate upon transfer to holey carbon substrates, forming a sub-micron-sized hydrogel network. The perforated nanomembrane improves the distribution of the protein molecules in the ice considerably. This facilitates data acquisition as demonstrated with two eukaryotic membrane protein complexes.

7.
Nat Struct Mol Biol ; 24(2): 123-130, 2017 02.
Article in English | MEDLINE | ID: mdl-28092368

ABSTRACT

Polycystin-2 (PC2), a calcium-activated cation TRP channel, is involved in diverse Ca2+ signaling pathways. Malfunctioning Ca2+ regulation in PC2 causes autosomal-dominant polycystic kidney disease. Here we report two cryo-EM structures of distinct channel states of full-length human PC2 in complex with lipids and cations. The structures reveal conformational differences in the selectivity filter and in the large exoplasmic domain (TOP domain), which displays differing N-glycosylation. The more open structure has one cation bound below the selectivity filter (single-ion mode, PC2SI), whereas multiple cations are bound along the translocation pathway in the second structure (multi-ion mode, PC2MI). Ca2+ binding at the entrance of the selectivity filter suggests Ca2+ blockage in PC2MI, and we observed density for the Ca2+-sensing C-terminal EF hand in the unblocked PC2SI state. The states show altered interactions of lipids with the pore loop and TOP domain, thus reflecting the functional diversity of PC2 at different locations, owing to different membrane compositions.


Subject(s)
TRPP Cation Channels/chemistry , Binding Sites , Calcium/chemistry , Calcium Signaling , Cryoelectron Microscopy , Glycosylation , HEK293 Cells , Humans , Models, Molecular , Phosphatidic Acids/chemistry , Phosphatidylcholines/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Quaternary
8.
Ultramicroscopy ; 160: 1-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26397752

ABSTRACT

A variety of physical phase plate designs have been developed to maximize phase contrast for weak phase objects in the transmission electron microscope (TEM). Most progress towards application in structural biology has been made with Zernike PPs consisting of a ~30 nm film of amorphous carbon with a central hole. Although problems such as beam-induced deterioration of Zernike PPs remain unsolved, it is likely that thin film phase plates will be applied routinely in TEM of ice-embedded biological specimens in the near future. However, the thick carbon film of thin film PPs dampens high-resolution information, which precludes their use for single-particle electron cryo-microscopy at atomic resolution. In this work, an improved design for a thin film phase plate is proposed, combining the advantages of Zernike PPs and 2D materials, such as graphene. The improved design features a disc of phase-shifting material mounted on an ultrathin support film. The proposed device imparts a phase shift only to electrons scattered to low angles, whereas contrast at high resolution is generated by conventional defocusing. The device maximizes phase contrast at low spatial frequencies, where defocus contrast is limiting, while damping of information at high spatial frequencies is avoided. Experiments demonstrate that the fabrication of such a device is feasible.

9.
Structure ; 23(6): 1005-17, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25960408

ABSTRACT

Saccharomyces cerevisiae harbors a family of GPI-anchored cell wall proteins for interaction with its environment. The flocculin Flo11, a major representative of these fungal adhesins, confers formation of different types of multicellular structures such as biofilms, flors, or filaments. To understand these environment-dependent growth phenotypes on a molecular level, we solved the crystal structure of the N-terminal Flo11A domain at 0.89-Å resolution. Besides a hydrophobic apical region, the Flo11A domain consists of a ß sandwich of the fibronectin type III domain (FN3). We further show that homophilic Flo11-Flo11 interactions and heterophilic Flo11-plastic interactions solely depend on the Flo11A domain and are strongly pH dependent. These functions of Flo11A involve an apical region with its surface-exposed aromatic band, which is accompanied by acidic stretches. Together with electron microscopic reconstructions of yeast cell-cell contact sites, our data suggest that Flo11 acts as a spacer-like, pH-sensitive adhesin that resembles a membrane-tethered hydrophobin.


Subject(s)
Cell Adhesion/physiology , Fibronectins/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Models, Molecular , Multigene Family/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Amino Acid Sequence , Amino Acids, Aromatic/chemistry , Membrane Glycoproteins/genetics , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/genetics
10.
Protein Sci ; 24(6): 987-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25761671

ABSTRACT

Fungal fatty acid synthases Type I (FAS I) are up to 2.7 MDa large molecular machines composed of large multifunctional polypeptides. Half of the amino acids in fungal FAS I are involved in structural elements that are responsible for scaffolding the elaborate barrel-shaped architecture and turning fungal FAS I into highly efficient de novo producers of fatty acids. Rhodosporidium toruloides is an oleaginous fungal species and renowned for its robust conversion of carbohydrates into lipids to over 70% of its dry cell weight. Here, we use cryo-EM to determine a 7.8-Å reconstruction of its FAS I that reveals unexpected features; its novel form of splitting the multifunctional polypeptide chain into the two subunits α and ß, and its duplicated ACP domains. We show that the specific distribution into α and ß occurs by splitting at one of many possible sites that can be accepted by fungal FAS I. While, therefore, the specific distribution in α and ß chains in R. toruloides FAS I is not correlated to increased protein activities, we also show that the duplication of ACP is an evolutionary late event and argue that duplication is beneficial for the lipid overproduction phenotype.


Subject(s)
Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Ustilaginales/enzymology , Cryoelectron Microscopy , Fatty Acid Synthases/genetics , Fatty Acid Synthases/isolation & purification , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Models, Molecular , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
11.
Ultramicroscopy ; 153: 22-31, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25697462

ABSTRACT

Charging of physical phase plates is a problem that has prevented their routine use in transmission electron microscopy of weak-phase objects. In theory, electrostatic phase plates are superior to thin-film phase plates since they do not attenuate the scattered electron beam and allow freely adjustable phase shifts. Electrostatic phase plates consist of multiple layers of conductive and insulating materials, and are thus more prone to charging than thin-film phase plates, which typically consist of only one single layer of amorphous material. We have addressed the origins of charging of Boersch phase plates and show how it can be reduced. In particular, we have performed simulations and experiments to analyze the influence of the insulating Si3N4 layers and surface charges on electrostatic charging. To optimize the performance of electrostatic phase plates, it would be desirable to fabricate electrostatic phase plates, which (i) impart a homogeneous phase shift to the unscattered electrons, (ii) have a low cut-on frequency, (iii) expose as little material to the intense unscattered beam as possible, and (iv) can be additionally polished by a focused ion-beam instrument to eliminate carbon contamination accumulated during exposure to the unscattered electron beam (Walter et al., 2012, Ultramicroscopy, 116, 62-72). We propose a new type of electrostatic phase plate that meets the above requirements and would be superior to a Boersch phase plate. It consists of three free-standing coaxial rods converging in the center of an aperture (3-fold coaxial phase plate). Simulations and preliminary experiments with modified Boersch phase plates indicate that the fabrication of a 3-fold coaxial phase plate is feasible.

12.
Nat Commun ; 5: 3690, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24751541

ABSTRACT

Listeriolysin O (LLO) is an essential virulence factor of Listeria monocytogenes that causes listeriosis. Listeria monocytogenes owes its ability to live within cells to the pH- and temperature-dependent pore-forming activity of LLO, which is unique among cholesterol-dependent cytolysins. LLO enables the bacteria to cross the phagosomal membrane and is also involved in activation of cellular processes, including the modulation of gene expression or intracellular Ca(2+) oscillations. Neither the pore-forming mechanism nor the mechanisms triggering the signalling processes in the host cell are known in detail. Here, we report the crystal structure of LLO, in which we identified regions important for oligomerization and pore formation. Mutants were characterized by determining their haemolytic and Ca(2+) uptake activity. We analysed the pore formation of LLO and its variants on erythrocyte ghosts by electron microscopy and show that pore formation requires precise interface interactions during toxin oligomerization on the membrane.


Subject(s)
Bacterial Toxins/chemistry , Biopolymers/chemistry , Heat-Shock Proteins/chemistry , Hemolysin Proteins/chemistry , Amino Acid Sequence , Bacterial Toxins/genetics , Crystallography, X-Ray , Heat-Shock Proteins/genetics , Hemolysin Proteins/genetics , Hydrogen-Ion Concentration , Listeria/chemistry , Molecular Sequence Data , Molecular Structure , Mutation , Sequence Homology, Amino Acid , Temperature
13.
J Mater Chem B ; 2(40): 6924-6930, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-32262101

ABSTRACT

Biomineralization of silica precursors, mediated by self-assembled proteins, is performed by many organisms. The silica cell walls of diatoms are perhaps the most stunning biomineral structures. Although the mechanisms of biomineralization are still not fully understood, template-assisted formation of silica nanostructures has gained much attention in the materials science community. Precise control of the location and the shape of structures obtained by biomineralization remains a challenge. This paper introduces a versatile biotechnological process that enables site-selective biomineralization of native biological membranes using genetically modified purple membrane (PM) from Halobacterium salinarum as a template. PM is a two-dimensional crystal consisting of bacteriorhodopsin (BR) and lipids. In this work we study PM-E234R7, a genetically modified PM containing mutated BR, where seven amino acids, starting from E234, were replaced by arginine in the C-terminus. The arginine sequence catalyzes silica formation from a tetraethylorthosilicate (TEOS) precursor. Silicification of the mutated PM variant starts with initial formation of membrane-attached spherical silica nanoparticles, which then fuse to form 2D silica nanoflakes, selectively, on the cytoplasmic side of the PM. Genetical modification of membrane proteins with poly-arginine sequences may be a general route for site-selective biomineralization of native biological membranes.

14.
Beilstein J Nanotechnol ; 3: 535-45, 2012.
Article in English | MEDLINE | ID: mdl-23019549

ABSTRACT

In this work the applicability of neopentasilane (Si(SiH(3))(4)) as a precursor for the formation of silicon nanowires by using gold nanoparticles as a catalyst has been explored. The growth proceeds via the formation of liquid gold/silicon alloy droplets, which excrete the silicon nanowires upon continued decomposition of the precursor. This mechanism determines the diameter of the Si nanowires. Different sources for the gold nanoparticles have been tested: the spontaneous dewetting of gold films, thermally annealed gold films, deposition of preformed gold nanoparticles, and the use of "liquid bright gold", a material historically used for the gilding of porcelain and glass. The latter does not only form gold nanoparticles when deposited as a thin film and thermally annealed, but can also be patterned by using UV irradiation, providing access to laterally structured layers of silicon nanowires.

15.
J Phys Chem B ; 116(32): 9727-31, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22834540

ABSTRACT

Inkjet printing is a versatile technique widely applied in biological microarray technology. Because of its photochemical and photophysical properties, bacteriorhodopsin (BR) from Halobacterium salinarum holds promise for applications in nanotechnology, and inkjet printing would simplify the transfer of BR to suitable substrates. Surfactants are essential parts of inkjet formulations tuning viscosity, rheology, and spreading behavior of the solution. However, many surfactants destabilize the structure of proteins and often cause denaturation accompanied by a complete loss of function. Inkjet printing of membrane proteins is particularly challenging and special care must be taken in the choice of the surfactant. For BR, the situation is complicated by the fact that the structural integrity of BR depends on its native membrane environment, the so-called purple membrane (PM). PM contains 10 lipid molecules per BR monomer and is very sensitive toward surfactants. In this work, we identified surfactants suitable for inkjet formulations containing PM. Initially, we screened a variety of technically relevant surfactants for compatibility with PM using the UV-vis absorption of the retinal chromophore as a natural probe. Promising candidates were selected, and their impact on the structure of PM and BR was analyzed using UV-vis spectroscopy, CD spectroscopy, and small-angle X-ray scattering (SAXS). We identified two surfactants compatible with PM and suitable for inkjet formulations. An inkjet formulation containing PM as dye component was developed. We demonstrate that the photochromic properties of BR are maintained upon inkjet printing.


Subject(s)
Eye Proteins/chemistry , Halobacterium salinarum/chemistry , Printing , Purple Membrane/chemistry , Retina , Surface-Active Agents/chemistry , Models, Biological , Protein Stability
16.
Ultramicroscopy ; 116: 62-72, 2012 May.
Article in English | MEDLINE | ID: mdl-22537744

ABSTRACT

Implementation of physical phase plates into transmission electron microscopes to achieve in-focus contrast for ice-embedded biological specimens poses several technological challenges. During the last decade several phase plates designs have been introduced and tested for electron cryo-microscopy (cryoEM), including thin film (Zernike) phase plates and electrostatic devices. Boersch phase plates (BPPs) are electrostatic einzel lenses shifting the phase of the unscattered beam by an arbitrary angle. Adjusting the phase shift to 90° achieves the maximum contrast transfer for phase objects such as biomolecules. Recently, we reported the implementation of a BPP into a dedicated phase contrast aberration-corrected electron microscope (PACEM) and demonstrated its use to generate in-focus contrast of frozen-hydrated specimens. However, a number of obstacles need to be overcome before BPPs can be used routinely, mostly related to the phase plate devices themselves. CryoEM with a physical phase plate is affected by electrostatic charging, obliteration of low spatial frequencies, and mechanical drift. Furthermore, BPPs introduce single sideband contrast (SSB), due to the obstruction of Friedel mates in the diffraction pattern. In this study we address the technical obstacles in detail and show how they may be overcome. We use X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) to identify contaminants responsible for electrostatic charging, which occurs with most phase plates. We demonstrate that obstruction of low-resolution features is significantly reduced by lowering the acceleration voltage of the microscope. Finally, we present computational approaches to correct BPP images for SSB contrast and to compensate for mechanical drift of the BPP.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron/methods , Microscopy, Phase-Contrast/methods , Animals , Humans , Microscopy, Electron/instrumentation , Microscopy, Phase-Contrast/instrumentation
17.
J Phys Chem B ; 116(25): 7455-62, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22512248

ABSTRACT

Bacteriorhodopsin (BR) is the key protein of the halobacterial photosynthetic system. BR assembles into two-dimensional crystalline patches, the so-called purple membranes (PM), and acts as a light-driven proton pump converting light energy into the chemical energy of a proton gradient over the cell membrane. The two-photon absorption (TPA) of BR is so far not fully understood. Astonishingly high TPA cross sections have been reported, but the molecular mechanisms have not been elucidated. In this work, we address structural changes in BR and PM upon TPA, investigating its TPA photochemistry by spectroscopy, small-angle X-ray scattering, as well as electron and atomic force microscopy. We observe that TPA of BR leads to formation of an UV-absorbing N-retinyl-bacterioopsin state, which is accompanied by the loss of crystalline order in PM. FTIR and CD spectroscopy confirm that BR trimers as well as the secondary structure of the BR molecules are preserved. We demonstrate that excitation by TPA results in the photochemical reduction of the retinal Schiff base, which in turn causes a permanent asymmetric shape change of BR, similar to the one transiently observed during the photocycle-related opening and closing of the cytoplasmic proton half channel. This shape change causes PM sheets to merely roll up toward the extracellular side and causes the loss of crystallinity of PM. We present a model for the TPA photoresponse of BR, which also explains the irreversibility of the process in terms of a photochemical reduction of the Schiff base.


Subject(s)
Bacteriorhodopsins/chemistry , Halobacterium salinarum/chemistry , Photobleaching , Purple Membrane/chemistry , Bacteriorhodopsins/ultrastructure , Circular Dichroism , Crystallization , Microscopy, Atomic Force , Photons , Protein Structure, Secondary , Purple Membrane/ultrastructure , Scattering, Small Angle , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
18.
J Phys Chem Lett ; 3(20): 2991-4, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-26292239

ABSTRACT

The interest in microbial opsins stems from their photophysical properties, which are superior to most organic dyes. Microbial rhodopsins like bacteriorhodopsin (BR) from Halobacterium salinarum have an astonishingly high cross-section for two-photon-absorption (TPA), which is of great interest for technological applications such as data storage. Irradiation of BR with intense laser pulses at 532 nm leads to formation of a bathochromic photoproduct, which is further converted to a photochemical species absorbing in the UV range. As demonstrated earlier, the photochemical conversions are induced by resonant TPA. However, the molecular basis of these conversions remained unresolved. In this work we use mass spectroscopy to demonstrate that TPA of BR leads to selective decarboxylation of two aspartic acids in the vicinity of the retinal chromphore. These photochemical conversions are the basis of permanent two-photon data storage in BR and are of critical importance for application of microbial opsins in optogenetics.

19.
Ultramicroscopy ; 111(5): 342-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21329648

ABSTRACT

Ultrathin carbon nanomembranes (CNM) comprising crosslinked biphenyl precursors have been tested as support films for energy-filtered transmission electron microscopy (EFTEM) of biological specimens. Due to their high transparency CNM are ideal substrates for electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) of stained and unstained biological samples. Virtually background-free elemental maps of tobacco mosaic virus (TMV) and ferritin have been obtained from samples supported by ∼1nm thin CNM. Furthermore, we have tested conductive carbon nanomembranes (cCNM) comprising nanocrystalline graphene, obtained by thermal treatment of CNM, as supports for cryoEM of ice-embedded biological samples. We imaged ice-embedded TMV on cCNM and compared the results with images of ice-embedded TMV on conventional carbon film (CC), thus analyzing the gain in contrast for TMV on cCNM in a quantitative manner. In addition we have developed a method for the preparation of vitrified specimens, suspended over the holes of a conventional holey carbon film, while backed by ultrathin cCNM.


Subject(s)
Carbon/chemistry , Ferritins/ultrastructure , Microscopy, Energy-Filtering Transmission Electron/methods , Nanostructures/chemistry , Tobacco Mosaic Virus/ultrastructure
20.
J Phys Chem B ; 114(46): 15424-8, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21033713

ABSTRACT

Self-assembly of membrane proteins inside the cell membrane critically depends on specific protein-protein and protein-lipid interactions. Purple membranes (PMs) from Halobacterium salinarum comprise wild-type bacteriorhodopsin (BR) and lipids only and form a 2-D crystalline lattice of P3 symmetry in the cell membrane. It is known that removal of the retinylidene residue as well as the exchange of selected amino acids lead to a loss of crystallinity. In PMs comprising the BR variant D85T, we have observed a tunable tendency to form crystalline domains, which depends on pH-value and chloride ion concentration. BR-D85T resembles the function of the chloride pump halorhodopsin. The protonation state of amino acid residues within the binding pocket and chloride binding in the vicinity of the protonated retinal Schiff base affect the overall shape of BR-D85T molecules in the membrane, thereby changing their interactions and subsequently their tendency to form crystalline areas. The combination of small-angle X-ray scattering, atomic force microscopy, and freeze-fracture electron microscopy enables us to analyze the transitions statistically as well as on the single membrane level. PM-D85T is a model system to study membrane protein association upon substrate binding in a native environment. Furthermore, the ability to reversibly modulate the crystallinity of PMs probably will be useful for the preparation of larger artificial crystalline arrays of BR and its variants.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/metabolism , Chlorides/metabolism , Purple Membrane/chemistry , Bacteriorhodopsins/genetics , Chlorides/chemistry , Crystallization , Freeze Fracturing , Halobacterium salinarum/chemistry , Halobacterium salinarum/cytology , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Models, Molecular , Point Mutation , Protein Conformation , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...