Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(50): 56310-56320, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36461928

ABSTRACT

Controlling the contact properties of a copper (Cu) electrode is an important process for improving the performance of an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) for high-speed applications, owing to the low resistance-capacitance product constant of Cu. One of the many challenges in Cu application to a-IGZO is inhibiting high diffusivity, which causes degradation in the performance of a-IGZO TFT by forming electron trap states. A self-assembled monolayer (SAM) can perfectly act as a Cu diffusion barrier (DB) and passivation layer that prevents moisture and oxygen, which can deteriorate the TFT on-off performance. However, traditional SAM materials have high contact resistance and low mechanical-adhesion properties. In this study, we demonstrate that tailoring the SAM using the chemical coupling method can enhance the electrical and mechanical properties of a-IGZO TFTs. The doping effects from the dipole moment of the tailored SAMs enhance the electrical properties of a-IGZO TFTs, resulting in a field-effect mobility of 13.87 cm2/V·s, an on-off ratio above 107, and a low contact resistance of 612 Ω. Because of the high electrical performance of tailored SAMs, they function as a Cu DB and a passivation layer. Moreover, a selectively tailored functional group can improve the adhesion properties between Cu and a-IGZO. These multifunctionally tailored SAMs can be a promising candidate for a very thin Cu DB in future electronic technology.

2.
Adv Mater ; 33(47): e2006091, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34048086

ABSTRACT

Metal oxide thin-film transistors have been continuously researched and mass-produced in the display industry. However, their phototransistors are still in their infancy. In particular, utilizing metal oxide semiconductors as phototransistors is difficult because of the limited light absorption wavelength range and persistent photocurrent (PPC) phenomenon. Numerous studies have attempted to improve the detectable light wavelength range and the PPC phenomenon. Here, recent studies on metal oxide phototransistors are reviewed, which have improved the range of light wavelengths and the PPC phenomenon by introducing an absorption layer of oxide or non-oxide hybrid structure. The materials of the absorption layer applied to absorb long-wavelength light are classified into oxides, chalcogenides, organic materials, perovskites, and nanodots. Finally, next-generation convergence studies combined with other research fields are introduced and future research directions are detailed.

SELECTION OF CITATIONS
SEARCH DETAIL
...