Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 43(21): 4036-4046, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32876395

ABSTRACT

In this study, high-performance countercurrent chromatography was employed to isolate six anthraquinone diglucosides, namely, cascarosides A-F, from cascara sagrada (Rhamnus purshiana DC [Rhamnaceae]) bark. The n-butanol-soluble extract of cascara sagrada was separated by off-line two-dimensional high-performance countercurrent chromatography. The first-dimensional high-performance countercurrent chromatography resolved the n-butanol-soluble extract (510 mg) of cascara sagrada using the flow-rate gradient method with a chloroform-methanol-isopropanol-water (6:6:1:4, v/v/v/v, normal-phase mode) system to afford four anthraquinone diglucoside fractions (groups I [cascarosides C-D, 71 mg], II [cascarosides E-F, 56 mg], III [cascaroside A, 53 mg], and IV [cascaroside B, 31 mg]). Groups I and II were separated by the second-dimensional high-performance countercurrent chromatography using an ethyl acetate-n-butanol-water (7:3:10, v/v/v, normal-phase mode) system to yield cascarosides C (34 mg), D (26 mg), E (19 mg), and F (15 mg). Additionally, one-step preparative-scale high-performance countercurrent chromatography method was developed to isolate large amounts of cascarosides A (389 mg) and B (187 mg) from the water-soluble extract (2.1 g) of cascara sagrada using an ethyl acetate-n-butanol-water (2:8:10, v/v/v, normal-phase mode) system. The current study demonstrated that high-performance countercurrent chromatography is a powerful technique for the isolation of marker compounds from herbal materials.


Subject(s)
Anthraquinones/isolation & purification , Glucosides/isolation & purification , Plant Extracts/isolation & purification , Rhamnus/chemistry , Anthraquinones/chemistry , Chromatography, High Pressure Liquid , Countercurrent Distribution , Glucosides/chemistry , Molecular Conformation , Plant Bark/chemistry , Plant Extracts/chemistry , Stereoisomerism
2.
Carbohydr Res ; 495: 108101, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32807360

ABSTRACT

Eight kaempferol oligosaccharides were isolated and identified from Camellia japonica seed cake. The chemical structures of the isolates were determined by using chromatographic and spectroscopic techniques, such as high-performance liquid chromatography with a photodiode array detector (HPLC-PDA), one-dimensional (1H and 13C), and two-dimensional nuclear magnetic resonance (1H-1H COSY, HSQC and HMBC), ESI-Q-TOF-MS, and optical rotation. To evaluate the anti-aging efficacy of kaempferol oligosaccharides for cosmetic use, the MMP-1 inhibitory effects of the isolates were studied using human dermal fibroblasts which were cultured in HaCaT cell-conditioned media. The MMP-1 inhibitory assay results revealed that kaempferol-3-O-ß-d-xylopyranosyl-(1 â†’ 3)-α-l-rhamnopyranosyl-(1 â†’ 6)-O-ß-d-glucopyranosyl-(1 â†’ 2)-O-ß-d-glucopyranoside showed the most potent MMP-1 inhibitory activity. The basal level inhibition was 50 ppm, which indicated that C. japonica seed cake is a promising material for the development of anti-aging skin cosmetics.


Subject(s)
Camellia/chemistry , Fibroblasts/drug effects , Kaempferols/pharmacology , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Oligosaccharides/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Humans , Kaempferols/chemical synthesis , Kaempferols/chemistry , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/chemistry , Molecular Structure , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Seeds/chemistry , Skin/drug effects , Skin/metabolism
3.
J Ginseng Res ; 44(1): 145-153, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32148397

ABSTRACT

BACKGROUND: Panax ginseng Meyer (Araliaceae) is a highly valued medicinal plant in Asian regions, especially in Korea, China, and Japan. Chemical and biological studies on P. ginseng have focused primarily on its roots, whereas the seeds remain poorly understood. This study explores the phytochemical and biological properties of compounds from P. ginseng seeds. METHODS: P. ginseng seeds were extracted with methanol, and 16 compounds were isolated using various chromatographic methods. The chemical structures of the isolates were determined by spectroscopic data. Antiinflammatory activities were evaluated for triterpene and steroidal saponins using lipopolysaccharide-stimulated RAW264.7 macrophages and THP-1 monocyte leukemia cells. RESULTS: Phytochemical investigation of P. ginseng seeds led to the isolation of a novel triterpene saponin, pseudoginsenoside RT8, along with 15 known compounds. Pseudoginsenoside RT8 exhibited more potent antiinflammatory activity than the other saponins, attenuating lipopolysaccharide-mediated induction of proinflammatory genes such as interleukin-1ß, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-9, and suppressed reactive oxygen species and nitric oxide generation in a dose-dependent manner. CONCLUSION: These findings indicate that pseudoginsenoside RT8 has a pharmaceutical potential as an antiinflammatory agent and that P. ginseng seeds are a good natural source for discovering novel bioactive molecules.

4.
Molecules ; 24(9)2019 May 04.
Article in English | MEDLINE | ID: mdl-31060200

ABSTRACT

Leea asiatica (L.) Ridsdale (Leeaceae) is found in tropical and subtropical countries and has historically been used as a traditional medicine in local healthcare systems. Although L. asiatica extracts have been found to possess anthelmintic and antioxidant-related nephroprotective and hepatoprotective effects, little attention has been paid toward the investigation of phytochemical constituents of this plant. In the current study, phytochemical analysis of isolates from L. asiatica led to the identification of 24 compounds, including a novel phenolic glucoside, seven triterpenoids, eight flavonoids, two phenolic glycosides, four diglycosidic compounds, and two miscellaneous compounds. The phytochemical structures of the isolates from L. asiatica were elucidated using spectroscopic analyses including 1D- and 2D-NMR and ESI-Q-TOF-MS. The presence of triterpenoids and flavonoids supports the evidence for anthelmintic and antioxidative effects of L. asiatica.


Subject(s)
Phytochemicals/analysis , Vitaceae/chemistry , Anthelmintics/chemistry , Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Medicine, Traditional , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
5.
Phytochemistry ; 160: 11-18, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30660780

ABSTRACT

Thirty-three phenolic compounds were identified from the extract of fermented tea (Camellia sinensis L.), including three undescribed flavonoids, namely quamoreokchaside I-II and kamoreokchaside I, along with thirty known compounds. All isolates were tested to evaluate their inhibitory effects against amyloid-beta (Aß) aggregation through thioflavin-T (ThT) fluorescence-based assay and transmission electron microscopy (TEM). Among the isolates, three tea polyphenols, including (-)-catechin gallate (CG), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), significantly decreased Aß aggregation at a concentration of 10 µg ml-1, compared to the positive control, Aß alone. The anti-Aß aggregation effects of CG, ECG, and EGCG were confirmed again via TEM, which were consistent with the ThT fluorescence-based assay. Moreover, CG and ECG provided stronger protection on SH-SY5Y cells against Aß-induced cytotoxicity than EGCG. Remarkably, CG showed more potent inhibitory activity than EGCG, the best-known anti-Aß aggregation agent from tea products.


Subject(s)
Amyloid beta-Peptides/chemistry , Camellia sinensis/chemistry , Fermentation , Polyphenols/pharmacology , Protein Aggregates/drug effects , Amyloid beta-Peptides/toxicity , Camellia sinensis/metabolism , Cell Line, Tumor , Cytoprotection/drug effects , Humans
6.
Phytochem Anal ; 30(2): 226-236, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30479045

ABSTRACT

INTRODUCTION: Camellia japonica L. (Theaceae) is an evergreen shrub, which is cultivated as a popular ornamental tree in Korea, China, and Japan and its seeds have been used as a source of cooking oil, in cosmetics and as a traditional medicine. Intensive phytochemical works have revealed that oleanane-type saponins are the characteristic compounds of the seeds of C. japonica. OBJECTIVE: The purpose of the present study is to isolate and determine oleanane-type saponins from C. japonica using high-performance countercurrent chromatography (HPCCC) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) and spectroscopic evidences, respectively. METHODOLOGY: HPLC electrospray ionisation quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) was applied to profile the saponin composition of an enriched saponin extract of C. japonica seeds. The enriched saponin extract was separated by HPCCC using a dichloromethane/methanol/isopropanol/water (9:6:1:4, v/v/v/v) system and RP-HPLC. The structures of the isolates were determined utilising ESI-Q-TOF-MS, one-dimensional and two-dimensional NMR and optical rotation. RESULTS: HPCCC on enriched saponin extract of C. japonica yielded four saponin fractions in the order of the number of sugars attached to the triterpene aglycone, and preparative RP-HPLC on each saponin fraction led to the isolation of nine novel saponins, namely camoreoside A-I, along with six known ones. CONCLUSIONS: This study indicates that combination of HPLC-ESI-Q-TOF-MS analysis and HPCCC coupled with RP-HPLC are excellent tools for discovering saponins from natural sources.


Subject(s)
Camellia/embryology , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Countercurrent Distribution/methods , Saponins/isolation & purification , Seeds/chemistry , Triterpenes/isolation & purification , Molecular Structure , Plant Extracts/chemistry , Proton Magnetic Resonance Spectroscopy , Saponins/chemistry , Spectrometry, Mass, Electrospray Ionization , Triterpenes/chemistry
7.
Nutrients ; 10(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544543

ABSTRACT

Benign prostatic hyperplasia (BPH) is a common disease in the elderly male population throughout the world. Among other factors, androgen dysregulation has been known to play major roles in its pathogenesis. HX109 is a botanical formulation prepared from a mixture of Taraxacum officinale, Cuscuta australis, and Nelumbo nucifera, which have traditionally been used-usually along with other plants-to treat urinary diseases. An ethanol extract was prepared from a mixture of these three plants, and its quality was controlled through cell-based bioassays and by quantification of several marker compounds by high-performance liquid chromatography (HPLC). In the testosterone propionate (TP)-induced prostate hyperplasia rat model, oral administration of HX109 ameliorated prostate enlargement and histological changes induced by TP. In LNCaP cells, a human prostate epithelial cell line, HX109 repressed AR-mediated cell proliferation and the induction of androgen receptor (AR) target genes at the transcriptional level without affecting the translocation or expression of AR. Such effects of HX109 on AR signaling were mediated through the control of activating transcriptional factor 3 (ATF3) expression, phosphorylation of calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß), and increases in intracellular calcium, as evidenced by data from experiments involving ATF3-specific siRNA, CaMKKß inhibitor, and calcium chelator, respectively. Taken together, our data suggest that HX109 might be used as a starting point for developing therapeutic agents for the treatment of BPH.


Subject(s)
Activating Transcription Factor 3/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Plant Preparations/pharmacology , Prostatic Hyperplasia , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Animals , Calcium/metabolism , Cell Line, Tumor , Humans , Male , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/metabolism , Protective Agents/pharmacology , Rats , Rats, Sprague-Dawley , Testosterone Propionate/adverse effects
8.
J Sep Sci ; 41(10): 2169-2177, 2018 May.
Article in English | MEDLINE | ID: mdl-29450982

ABSTRACT

In this study, the chloroform-soluble extract of Cuscuta auralis was separated successfully using off-line two-dimensional high-performance countercurrent chromatography, yielding a γ-pyrone, two alkaloids, a flavonoid, and four lignans. The first-dimensional countercurrent separation using a methylene chloride/methanol/water (11:6:5, v/v/v) system yielded three subfractions (fractions I-III). The second-dimensional countercurrent separations, conducted on fractions I-III using n-hexane/ethyl acetate/methanol/water/acetic acid (5:5:5:5:0, 3:7:3:7:0, and 1:9:1:9:0.01, v/v/v/v/v) systems, gave maltol (1), (-)-(13S)-cuscutamine (2), (+)-(13R)-cuscutamine (3), (+)-pinoresinol (4), (+)-epipinoresinol (5), kaempferol (6), piperitol (7), and (9R)-hydroxy-d-sesamin (8). To the best of our knowledge, maltol was identified for the first time in Cuscuta species. Furthermore, this report details the first full assignment of spectroscopic data of two cuscutamine epimers, (-)-(13S)-cuscutamine and (+)-(13R)-cuscutamine.


Subject(s)
Cuscuta/chemistry , Plant Extracts/chemistry , Seeds/chemistry , Alkaloids/chemistry , Chloroform/chemistry , Chromatography, High Pressure Liquid , Circular Dichroism , Countercurrent Distribution , Flavonoids/chemistry , Furans/chemistry , Hexanes , Kaempferols/chemistry , Lignans/chemistry , Magnetic Resonance Spectroscopy , Pyrones/chemistry , Spectrophotometry
9.
J Sep Sci ; 39(24): 4723-4731, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27774729

ABSTRACT

Efficient high-performance countercurrent chromatography methods were developed to isolate five typical compounds from the extracts of Gentiana macrophylla. n-Butanol-soluble extract of G. macrophylla contained three hydrophilic iridoids, loganic acid (1), swertiamarin (2) and gentiopicroside (3), and a chromene derivative, macrophylloside D (4) which were successfully isolated by flow rate gradient (1.5 mL/min in 0-60 min, 5.0 mL/min in 60-120 min), and consecutive flow rate gradient HPCCC using n-butanol/0.1% aqueous trifluoroacetic acid (1:1, v/v, normal phase mode) system. The yields of 1-4 were 22, 16, 122, and 6 mg, respectively, with purities over 97% in a flow rate gradient high-performance countercurrent chromatography, and consecutive flow rate gradient high-performance countercurrent chromatography gave 1, 2, 3 (54, 41, 348 mg, respectively, purities over 97%) and 4 (13 mg, purity at 95%) from 750 mg of sample. The main compound in methylene chloride soluble extract, 2-methoxyanofinic acid, was successfully separated by n-hexane/ethyl acetate/methanol/water (4:6:4:6, v/v/v/v, flow-rate: 4 mL/min, reversed phase mode) condition. The structures of five isolates were elucidated by 1 H, 13 C NMR and ESI-Q-TOF-MS spectroscopic data which were compared with previously reported values.


Subject(s)
Gentiana/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Countercurrent Distribution , Hexanes
SELECTION OF CITATIONS
SEARCH DETAIL
...