Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 463(7278): 184-90, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20016488

ABSTRACT

Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.


Subject(s)
Lung Neoplasms/etiology , Lung Neoplasms/genetics , Mutation/genetics , Nicotiana/adverse effects , Small Cell Lung Carcinoma/etiology , Small Cell Lung Carcinoma/genetics , Smoking/adverse effects , Carcinogens/toxicity , Cell Line, Tumor , DNA Copy Number Variations/drug effects , DNA Copy Number Variations/genetics , DNA Damage/genetics , DNA Helicases/genetics , DNA Mutational Analysis , DNA Repair/genetics , DNA-Binding Proteins/genetics , Exons/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genome, Human/drug effects , Genome, Human/genetics , Humans , Mutagenesis, Insertional/drug effects , Mutagenesis, Insertional/genetics , Mutation/drug effects , Promoter Regions, Genetic/genetics , Sequence Deletion/genetics
2.
Genome Res ; 19(9): 1527-41, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19546169

ABSTRACT

We describe the genome sequencing of an anonymous individual of African origin using a novel ligation-based sequencing assay that enables a unique form of error correction that improves the raw accuracy of the aligned reads to >99.9%, allowing us to accurately call SNPs with as few as two reads per allele. We collected several billion mate-paired reads yielding approximately 18x haploid coverage of aligned sequence and close to 300x clone coverage. Over 98% of the reference genome is covered with at least one uniquely placed read, and 99.65% is spanned by at least one uniquely placed mate-paired clone. We identify over 3.8 million SNPs, 19% of which are novel. Mate-paired data are used to physically resolve haplotype phases of nearly two-thirds of the genotypes obtained and produce phased segments of up to 215 kb. We detect 226,529 intra-read indels, 5590 indels between mate-paired reads, 91 inversions, and four gene fusions. We use a novel approach for detecting indels between mate-paired reads that are smaller than the standard deviation of the insert size of the library and discover deletions in common with those detected with our intra-read approach. Dozens of mutations previously described in OMIM and hundreds of nonsynonymous single-nucleotide and structural variants in genes previously implicated in disease are identified in this individual. There is more genetic variation in the human genome still to be uncovered, and we provide guidance for future surveys in populations and cancer biopsies.


Subject(s)
Base Pairing , Computational Biology/methods , Genetic Variation , Genome, Human , Ligases , Sequence Analysis, DNA/methods , Africa , Base Sequence , Genomics , Genotype , Heterozygote , Homozygote , Humans , Polymorphism, Single Nucleotide , Reference Standards
3.
Mutat Res ; 573(1-2): 111-35, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-15829242

ABSTRACT

In this review we describe the principles, protocols, and applications of two commercially available SNP genotyping platforms, the TaqMan SNP Genotyping Assays and the SNPlex Genotyping System. Combined, these two technologies meet the requirements of multiple SNP applications in genetics research and pharmacogenetics. We also describe a set of SNP selection tools and validated assay resources which we developed to accelerate the cycle of experimentation on these platforms. Criteria for selecting the more appropriate of these two genotyping technologies are presented: the genetic architecture of the trait of interest, the throughput required, and the number of SNPs and samples needed for a successful study. Overall, the TaqMan assay format is suitable for low- to mid-throughput applications in which a high assay conversion rate, simple assay workflow, and low cost of automation are desirable. The SNPlex Genotyping System, on the other hand, is well suited for SNP applications in which throughput and cost-efficiency are essential, e.g., applications requiring either the testing of large numbers of SNPs and samples, or the flexibility to select various SNP subsets.


Subject(s)
Genotype , Polymorphism, Single Nucleotide , Gene Frequency , Humans , Linkage Disequilibrium , Pharmacogenetics/methods , Software
4.
J Biomol Tech ; 16(4): 398-406, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16522862

ABSTRACT

We developed the SNPlex Genotyping System to address the need for accurate genotyping data, high sample throughput, study design flexibility, and cost efficiency. The system uses oligonucleotide ligation/polymerase chain reaction and capillary electrophoresis to analyze bi-allelic single nucleotide polymorphism genotypes. It is well suited for single nucleotide polymorphism genotyping efforts in which throughput and cost efficiency are essential. The SNPlex Genotyping System offers a high degree of flexibility and scalability, allowing the selection of custom-defined sets of SNPs for medium- to high-throughput genotyping projects. It is therefore suitable for a broad range of study designs. In this article we describe the principle and applications of the SNPlex Genotyping System, as well as a set of single nucleotide polymorphism selection tools and validated assay resources that accelerate the assay design process. We developed the control pool, an oligonucleotide ligation probe set for training and quality-control purposes, which interrogates 48 SNPs simultaneously. We present performance data from this control pool obtained by testing genomic DNA samples from 44 individuals. in addition, we present data from a study that analyzed 521 SNPs in 92 individuals. Combined, both studies show the SNPlex Genotyping system to have a 99.32% overall call rate, 99.95% precision, and 99.84% concordance with genotypes analyzed by TaqMan probe-based assays. The SNPlex Genotyping System is an efficient and reliable tool for a broad range of genotyping applications, supported by applications for study design, data analysis, and data management.


Subject(s)
Biotechnology/methods , Genotype , Polymorphism, Single Nucleotide , DNA/genetics , Electrophoresis, Capillary , Evaluation Studies as Topic , Gene Frequency , Genome, Human , Humans , Nucleic Acid Amplification Techniques , Pharmacogenetics , Polymerase Chain Reaction , Quality Control , Reproducibility of Results , Software , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...