Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stapp Car Crash J ; 46: 321-51, 2002 Nov.
Article in English | MEDLINE | ID: mdl-17096232

ABSTRACT

Thirty-six lateral PMHS sled tests were performed at 6.7 or 8.9 m/s, under rigid or padded loading conditions and with a variety of impact surface geometries. Forces between the simulated vehicle environment and the thorax, abdomen, and pelvis, as well as torso deflections and various accelerations were measured and scaled to the average male. Mean +/- one standard deviation corridors were calculated. PMHS response corridors for force, torso deflection and acceleration were developed. The offset test condition, when partnered with the flat wall condition, forms the basis of a robust battery of tests that can be used to evaluate how an ATD interacts with its environment, and how body regions within the ATD interact with each other.

2.
Stapp Car Crash J ; 46: 477-512, 2002 Nov.
Article in English | MEDLINE | ID: mdl-17096239

ABSTRACT

A new biofidelity assessment system is being developed and applied to three side impact dummies: the WorldSID-alpha, the ES-2 and the SID-HIII. This system quantifies (1) the ability of a dummy to load a vehicle as a cadaver does, "External Biofidelity," and (2) the ability of a dummy to replicate those cadaver responses that best predict injury potential, "Internal Biofidelity." The ranking system uses cadaver and dummy responses from head drop tests, thorax and shoulder pendulum tests, and whole body sled tests. Each test condition is assigned a weight factor based on the number of human subjects tested to form the biomechanical response corridor and how well the biofidelity tests represent FMVSS 214, side NCAP (SNCAP) and FMVSS 201 Pole crash environments. For each response requirement, the cumulative variance of the dummy response relative to the mean cadaver response (DCV) and the cumulative variance of the mean cadaver response relative to the mean plus one standard deviation (CCV) are calculated. The ratio of DCV/CCV expresses how well the dummy response duplicates the mean cadaver response: a smaller ratio indicating better biofidelity. For each test condition, the square root is taken of each Response Comparison Value (DCV/CCV), and then these values are averaged and multiplied by the appropriate Test Condition Weight. The weighted and averaged comparison values are then summed and divided by the sum of the Test Condition Weights to obtain a rank for each body region. Each dummy obtains an overall rank for External Biofidelity and an overall rank for Internal Biofidelity comprised of an average of the ranks from each body region. Of the three dummies studied, the selected comparison test data indicate that the WorldSID-alpha prototype dummy demonstrated the best overall External Biofidelity although improvement is needed in all of the dummies to better replicate human kinematics. All three dummies estimate potential injury assessment with similar levels of Internal Biofidelity.

SELECTION OF CITATIONS
SEARCH DETAIL
...