Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(31): e2301993, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37750249

ABSTRACT

Herein, the self-reinforced inductive effect derived from coexistence of both p- and n-type redox-active motifs in a single organic molecule is presented. Molecular orbital energy levels of each motif are dramatically tuned, which leads to the higher oxidation and the lower reduction potentials. The self-reinforced inductive effect of the symmetric bipolar organic molecule, N,N'-dimethylquinacridone (DMQA), is corroborated, by both experimental and theoretical methods. Furthermore, its redox mechanism and reaction pathway in the Li+ -battery system are scrutinized. DMQA shows excellent capacity retention at the operating voltage of 3.85 and 2.09 V (vs Li+ /Li) when used as the cathode and anode, respectively. Successful operation of DMQA electrodes in a symmetric all-organic battery is also demonstrated. The comprehensive insight into the energy storage capability of the symmetric bipolar organic molecule and its self-reinforced inductive effect is provided. Thus, a new class of organic electrode materials for symmetric all-organic batteries as well as conventional rechargeable batteries can be conceived.

2.
ACS Appl Mater Interfaces ; 13(35): 41517-41523, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34428892

ABSTRACT

We introduce a simple and easy way to functionalize the surface of various carbonaceous materials through the ultraviolet light/ozone (UV/O3) plasma where we utilize the zero-, one-, and two-dimensional carbon frameworks. In a general manner, the lamps of a UV/O3 generator create two different wavelengths (λ = 185 and 254 nm); the shorter wavelength (λ = 185 nm) dissociates the oxygen (O2) in air and the longer wavelength (λ = 254 nm) dissociates the O3 and creates the reactive and monoatomic oxygen radical, which tends to incorporate onto the defects of the carbons. By tailoring the association and dissociation of the oxygen with various forms, carbon black, carbon nanofibers, and graphite flakes, chosen as representative models for the zero-, one-, and two-dimensional carbon frameworks, their structure can be oxidized, respectively, which is known as photochemical oxidation. Various carbons have their own distinctive morphology and electron transport properties, which are applicable for the lithium-sulfur (Li-S) cell. We, here, report on the improvement of electrochemical performance of the lithium/sulfur cell through such an efficient functionalization approach.

3.
J Phys Chem C Nanomater Interfaces ; 124(13): 7082-7090, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32273937

ABSTRACT

Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid-state NMR spectroscopy is a powerful approach for gaining chemical and structural insights at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here, we employ for the first time metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material Li4Ti5O12. In addition for being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect that the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.

4.
Chem Commun (Camb) ; 55(97): 14609-14612, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31742270

ABSTRACT

Recently, great advances of the Li-S battery technology have enabled its penetration as the power source of mid- and large-sized devices, which require high energy and power density that cannot be achieved with Li-ion batteries. While the most successful Li-S battery operation is enabled by the tailoring of the sulfur composite cathode composite structure, the binder system has recently been considered as another important factor. We study the structural and electrochemical performance of sulfur cathodes prepared with two different binders. Enhanced battery performance is observed in the SBR/CMC-based electrode and its origin is scrutinized.

SELECTION OF CITATIONS
SEARCH DETAIL
...