Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(11): 3384-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21514825

ABSTRACT

The discovery of novel and highly potent oxopiperazine based B1 receptor antagonists is described. Compared to the previously described arylsulfonylated (R)-3-amino-3-phenylpropionic acid series, the current compounds showed improved in vitro potency and metabolic stability. Compound 17, 2-((2R)-1-((4-methylphenyl)sulfonyl)-3-oxo-2-piperazinyl)-N-((1R)-6-(1-piperidinylmethyl)-1,2,3,4-tetrahydro-1-naphthalenyl)acetamide, showed EC(50) of 10.3 nM in a rabbit biochemical challenge model. The practical syntheses of chiral arylsulfonylated oxopiperazine acetic acids are also described.


Subject(s)
Acetamides/therapeutic use , Bradykinin B1 Receptor Antagonists , Inflammation/drug therapy , Pain/drug therapy , Piperazines/therapeutic use , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Dogs , Inhibitory Concentration 50 , Mice , Models, Animal , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Rabbits , Rats , Receptor, Bradykinin B1/chemistry , Stereoisomerism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 16(8): 2071-5, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16464576

ABSTRACT

The bradykinin 1 (B1) receptor is upregulated during times of inflammation and is important for maintaining inflamed and chronic pain states. Blocking this receptor has been shown to reverse and/or ameliorate pain and inflammation in animal models. In this report, we describe a new class of B1 receptor antagonists that contain the piperidine acetic acid tetralin core. A structure-activity relationship for these analogs is described in this paper. The most potent compounds from this class have IC50s<20 nM in a B1 receptor functional assay. One of these compounds, 13g, shows modest oral bioavailability in rats.


Subject(s)
Analgesics/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Bradykinin B1 Receptor Antagonists , Tetrahydronaphthalenes/chemistry , Acetic Acid/chemistry , Administration, Oral , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Availability , Inhibitory Concentration 50 , Piperidines/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...