Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stud Health Technol Inform ; 310: 249-253, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269803

ABSTRACT

Every year there are approximately three million new specialist clinic appointments at local hospital networks in Victoria. CSIRO, in collaboration with Austin Health, have developed two algorithms to assist with waitlist management in their outpatient specialist clinics. This study describes the implementation of these algorithms in software tools developed to support their use and trial in the clinical setting at Austin Health. We discuss the system design and development of both these software tools. We also review the implemented workflow of the tools and discuss how these tools seek to improve current systems.


Subject(s)
Algorithms , Ambulatory Care Facilities , Hospitals , Software , Waiting Lists
2.
BMC Health Serv Res ; 23(1): 1343, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042831

ABSTRACT

BACKGROUND: Operating rooms (ORs) are one of the costliest units in a hospital, therefore the cumulative consequences of any kind of inefficiency in OR management lead to a significant loss of revenue for the hospital, staff dissatisfaction, and patient care disruption. One of the possible solutions to improving OR efficiency is knowing a reliable estimate of the duration of operations. The literature suggests that the current methods used in hospitals, e.g., a surgeon's estimate for the given surgery or taking the average of only five previous records of the same procedure, have room for improvement. METHODS: We used over 4 years of elective surgery records (n = 52,171) from one of the major metropolitan hospitals in Australia. We developed robust Machine Learning (ML) approaches to provide a more accurate prediction of operation duration, especially in the absence of surgeon's estimation. Individual patient characteristics and historic surgery information attributed to medical records were used to train predictive models. A wide range of algorithms such as Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were tested for predicting operation duration. RESULTS: The results show that the XGBoost model provided statistically significantly less error than other compared ML models. The XGBoost model also reduced the total absolute error by 6854 min (i.e., about 114 h) compared to the current hospital methods. CONCLUSION: The results indicate the potential of using ML methods for reaching a more accurate estimation of operation duration compared to current methods used in the hospital. In addition, using a set of realistic features in the ML models that are available at the point of OR scheduling enabled the potential deployment of the proposed approach.


Subject(s)
Elective Surgical Procedures , Operating Rooms , Humans , Hospitals , Algorithms , Random Forest
3.
ACS Omega ; 6(18): 12306-12317, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34056383

ABSTRACT

Toxicity prediction using quantitative structure-activity relationship has achieved significant progress in recent years. However, most existing machine learning methods in toxicity prediction utilize only one type of feature representation and one type of neural network, which essentially restricts their performance. Moreover, methods that use more than one type of feature representation struggle with the aggregation of information captured within the features since they use predetermined aggregation formulas. In this paper, we propose a deep learning framework for quantitative toxicity prediction using five individual base deep learning models and their own base feature representations. We then propose to adopt a meta ensemble approach using another separate deep learning model to perform aggregation of the outputs of the individual base deep learning models. We train our deep learning models in a weighted multitask fashion combining four quantitative toxicity data sets of LD50, IGC50, LC50, and LC50-DM and minimizing the root-mean-square errors. Compared to the current state-of-the-art toxicity prediction method TopTox on LD50, IGC50, and LC50-DM, that is, three out of four data sets, our method, respectively, obtains 5.46, 16.67, and 6.34% better root-mean-square errors, 6.41, 11.80, and 12.16% better mean absolute errors, and 5.21, 7.36, and 2.54% better coefficients of determination. We named our method QuantitativeTox, and our implementation is available from the GitHub repository https://github.com/Abdulk084/QuantitativeTox.

SELECTION OF CITATIONS
SEARCH DETAIL
...