Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 242(Pt 3): 124957, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37217049

ABSTRACT

Local treatment of bladder cancer faces several limitations such as short residence time or low permeation through urothelium tissue. The aim of this work was to develop patient-friendly mucoadhesive gel formulations combining gemcitabine and the enzyme papain for improved intravesical chemotherapy delivery. Hydrogels based on two different polysaccharides, gellan gum and sodium carboxymethylcellulose (CMC), were prepared with either native papain or papain nanoparticles (nanopapain) to explore for the first time their use as permeability enhancers through bladder tissue. Gel formulations were characterized regarding enzyme stability, rheological behavior, retention on bladder tissue and bioadhesion, drug release properties, permeation capacity, and biocompatibility. After 90 days of storage, the enzyme loaded in the CMC gels retained up to 83.5 ± 4.9 % of its activity in the absence of the drug, and up to 78.1 ± 5.3 with gemcitabine. The gels were mucoadhesive and the enzyme papain showed mucolytic action, which resulted in resistance against washing off from the urothelium and enhanced permeability of gemcitabine in the ex vivo tissue diffusion tests. Native papain shortened lag-time tissue penetration to 0.6 h and enhanced 2-fold drug permeability All formulations demonstrated pseudoplastic behavior and no irritability. Overall, the developed formulations have potential as an upgraded alternative to intravesical therapy for bladder cancer treatment.


Subject(s)
Gemcitabine , Urinary Bladder Neoplasms , Humans , Urinary Bladder , Carboxymethylcellulose Sodium/therapeutic use , Hydrogels/therapeutic use , Papain , Urinary Bladder Neoplasms/drug therapy , Polysaccharides, Bacterial/therapeutic use , Drug Delivery Systems/methods
2.
Gels ; 9(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36826257

ABSTRACT

Adaptable hydrogels have been used in the biomedical field to address several pathologies, especially those regarding tissue defects. Here, we describe unprecedented catechol-like functionalized polyrotaxane (PR) polymers able to form hydrogels. PR were functionalized with the incorporation of hydroxypyridinone (HOPO) moieties into the polymer backbone, with a degree of substitution from 4 to 22%, depending on the PR type. The hydrogels form through the functionalized supramolecular systems when in contact with a Fe(III) solution. Despite the hydrogel formation being at physiological pH (7.4), the HOPO derivatives are extremely resistant to oxidation, unlike common catechols; consequently, they prevent the formation of quinones, which can lead to irreversible bounds within the matrix. The resulting hydrogels demonstrated properties lead to unique hydrogels with improved mechanical behavior obtained by metallic coordination crosslinking, due to the synergies of the sliding-ring PR and the non-covalent (reversible) catechol analogues. Following this strategy, we successfully developed innovative, cytocompatible, oxidative-resistant, and reversible crosslinked hydrogels, with the potential of being used as structural self-materials for a variety of applications, including in the biomedical field.

3.
Gels ; 8(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36135300

ABSTRACT

Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy. However, due to bladder anatomy and physiology, current intravesical therapies present limitations concerning permeation and time of residence. Furthermore, they require several frequent catheter insertions with a reduced interval between doses, which is highly demotivating for the patient. This scenario has encouraged several pieces of research focusing on the development of drug delivery systems (DDS) to improve drug time residence, permeation capacity, and target release. In this review, the current situation of BC is described concerning the disease and available treatments, followed by a report on the main DDS developed in the past few years, focusing on those based on mucoadhesive polymers as a strategy. A brief review of methods to evaluate mucoadhesion properties is also presented; lastly, different polymers suitable for this application are discussed.

4.
Gels ; 8(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35877502

ABSTRACT

Chronic wounds are physical traumas that significantly impair the quality of life of over 40 million patients worldwide. Aerogels are nanostructured dry porous materials that can act as carriers for the local delivery of bioactive compounds at the wound site. However, aerogels are usually obtained with low drug loading yields and poor particle size reproducibility and urges the implementation of novel and high-performance processing strategies. In this work, alginate aerogel particles loaded with vancomycin, an antibiotic used for the treatment of Staphylococcus aureus infections, were obtained through aerogel technology combined with gel inkjet printing and water-repellent surfaces. Alginate aerogel particles showed high porosity, large surface area, a well-defined spherical shape and a reproducible size (609 ± 37 µm). Aerogel formulation with vancomycin loadings of up to 33.01 ± 0.47 µg drug/mg of particle were obtained with sustained-release profiles from alginate aerogels for more than 7 days (PBS pH 7.4 medium). Overall, this novel green aerogel processing strategy allowed us to obtain nanostructured drug delivery systems with improved drug loading yields that can enhance the current antibacterial treatments for chronic wounds.

5.
ACS Biomater Sci Eng ; 7(9): 4102-4127, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34137581

ABSTRACT

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.


Subject(s)
Hydrogels , Polysaccharides , Drug Delivery Systems , Polymers , Proteins
6.
Langmuir ; 32(3): 699-705, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26725503

ABSTRACT

New magnetic surfactants, (cationic hexadecyltrimethlyammonium bromotrichlorogadolinate (CTAG), decyltrimethylammonium bromotrichlorogadolinate (DTAG), and a magnetic polymer (poly(3-acrylamidopropyl)trimethylammonium tetrachlorogadolinate (APTAG)) have been synthesized by the simple mixing of the corresponding surfactants and polymer with gadolinium metal ions. A magnetic anionic surfactant, gadolinium tri(1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) (Gd(AOT)3), was synthesized via metathesis. Both routes enable facile preparation of magnetically responsive magnetic polymers and surfactants without the need to rely on nanocomposites or organic frameworks with polyradicals. Electrical conductivity, surface tensiometry, SQUID magnetometry, and small-angle neutron scattering (SANS) demonstrate surface activity and self-aggregation behavior of the magnetic surfactants similar to their magnetically inert parent analogues but with added magnetic properties. The binding of the magnetic surfactants to proteins enables efficient separations under low-strength (0.33 T) magnetic fields in a new, nanoparticle-free approach to magnetophoretic protein separations and extractions. Importantly, the toxicity of the magnetic surfactants and polymers is, in some cases, lower than that of their halide analogues.


Subject(s)
Cetrimonium Compounds/chemistry , Chemical Fractionation/methods , Gadolinium/chemistry , Organometallic Compounds/chemistry , Surface-Active Agents/chemistry , Animals , CHO Cells , Cations , Cetrimonium , Cricetulus , Electric Conductivity , Electrophoresis, Polyacrylamide Gel , Humans , Insulin-Like Growth Factor II/isolation & purification , Lipoprotein(a)/isolation & purification , Magnetic Fields , Magnets , Serum Albumin/isolation & purification , Surface Tension
7.
Mini Rev Med Chem ; 16(6): 498-508, 2016.
Article in English | MEDLINE | ID: mdl-26349496

ABSTRACT

Microemulsions combine the advantages of emulsions with those of nanocarriers, overcoming the stability problems of the former and providing facile scalable systems with compartments adequate for high drug loadings. Recently, microemulsions are gaining attention in the formulation of anticancer drugs not only for topical treatment, but also for systemic delivery as well as for the development of theranostic systems. The aim of this paper is two-fold. First, an updated review about general features, preparation, characterization and pharmaceutical applications, with a special focus on colorectal cancer, is provided. Second, a case study of formulation of methotrexate in microemulsions is presented. Various essential oils (menthol, trans-anethole, α-tocopherol) and surfactants (TPGS-1000, Maxemul 6112, Noigen RN-20) were investigated for the preparation of o/w microemulsions for the delivery of methotrexate, and the ability of methotrexate-loaded microemulsions to inhibit cancer cell growth was then evaluated. Disregarding the surfactants used, menthol and trans-anethole led to cytotoxic microemulsions, whereas α-tocopherol based-formulations induced cell proliferation. These findings highlight the role that the oily component may play in the efficacy and safety of the microemulsions.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Colorectal Neoplasms/drug therapy , Emulsions/chemistry , Methotrexate/administration & dosage , Oils, Volatile/chemistry , Pharmaceutical Vehicles/chemistry , Surface-Active Agents/chemistry , Animals , Antimetabolites, Antineoplastic/chemistry , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Chemistry, Pharmaceutical/methods , Colon/drug effects , Colon/pathology , Colorectal Neoplasms/pathology , Drug Delivery Systems/methods , Emulsions/adverse effects , Humans , Methotrexate/chemistry , Methotrexate/pharmacology , Methotrexate/therapeutic use , Oils, Volatile/adverse effects , Pharmaceutical Vehicles/adverse effects , Surface-Active Agents/adverse effects
8.
Colloids Surf B Biointerfaces ; 133: 270-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26115534

ABSTRACT

Interactions of X-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers with cell membranes were investigated recording the π-A isotherms of monolayer systems of dipalmitoylphosphatidylcholine (DPPC):cholesterol 100:0; 80:20 and 60:40 mol ratio and evaluating the capability of the copolymers to trigger haemolysis or to protect from haemolytic agents. Four varieties of poloxamine (Tetronic 904, 908, 1107 and 1307) were chosen in order to cover a wide range of EO and PO units contents and molecular weights, and compared to a variety of poloxamer (Pluronic P85). The π-A isotherms revealed that the greater the content in cholesterol, the stronger the interaction of the block copolymers with the lipids monolayer. The interactions were particularly relevant at low pressures and low lipid proportions, mimicking the conditions of damaged membranes. Relatively hydrophobic copolymers bearing short PEO blocks (e.g., T904 and P85) intercalated among the lipids expanding the surface area (ΔGexc) but not effectively sealing the pores. These varieties showed haemolytic behavior. Oppositely, highly hydrophilic copolymers bearing long PEO blocks (e.g., T908, T1107 and T1307) caused membrane contraction and outer leaflet sealing due to strong interactions of PEO with cholesterol and diamine core with phospholipids. These later varieties were not haemolytic and exerted a certain protective effect against spontaneous haemolysis for both intact erythrocytes and cholesterol-depleted erythrocytes.


Subject(s)
Cholesterol/analysis , Membrane Lipids/chemistry , Poloxamer/chemistry , Membranes, Artificial , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...