Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 23(12): 1388-1396, 2023.
Article in English | MEDLINE | ID: mdl-37005537

ABSTRACT

BACKGROUND: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer. OBJECTIVE: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies. METHODS: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18. RESULTS: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies. CONCLUSION: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Molecular Docking Simulation , Protein Serine-Threonine Kinases/metabolism , Biphenyl Compounds/pharmacology , Molecular Dynamics Simulation
2.
Environ Res ; 211: 113060, 2022 08.
Article in English | MEDLINE | ID: mdl-35283076

ABSTRACT

The absence of novel and efficient methods for the elimination of persistent organic pollutants (POPs) from the environment is a serious concern in the society. The pollutants release into the atmosphere by means of industrialization and urbanization is a massive global hazard. Although, the eco-toxicity associated with nanotechnology is still being debated, nano-remediation is a potentially developing tool for dealing with contamination of the environment, particularly POPs. Nano-remediation is a novel strategy to the safe and long-term removal of POPs. This detailed review article presents an important perspective on latest innovations and future views of nano-remediation methods used for environmental decontamination, like nano-photocatalysis and nanosensing. Different kinds of nanomaterials including nanoscale zero-valent iron (nZVI), carbon nanotubes (CNTs), magnetic and metallic nanoparticles, silica (SiO2) nanoparticles, graphene oxide, covalent organic frameworks (COFs), and metal organic frameworks (MOFs) have been summarized for the mitigation of POPs. Furthermore, the long-term viability of nano-remediation strategies for dealing with legacy contamination was considered, with a particular emphasis on environmental and health implications. The assessment goes on to discuss the environmental consequences of nanotechnology and offers consensual recommendations on how to employ nanotechnology for a greater present and a more prosperous future.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Metal-Organic Frameworks , Nanotubes, Carbon , Environmental Pollutants/toxicity , Iron , Nanotubes, Carbon/toxicity , Persistent Organic Pollutants , Silicon Dioxide
3.
J Basic Microbiol ; 62(11): 1319-1336, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35048396

ABSTRACT

Polysaccharides are biobased polymers obtained from renewable sources. They exhibit various interesting features including biocompatibility, biodegradability, and nontoxicity. Microbial polysaccharides are produced by several microorganisms including yeast, fungi, algae, and bacteria. Microbial polysaccharides have gained high importance in biotechnology due to their novel physiochemical characteristics and composition. Among microbial polysaccharides, xanthan, alginate, gellan, and dextran are the most commonly reported polysaccharides for the development of biomimetic materials for biomedical applications including targeted drug delivery, wound healing, and tissue engineering. Several chemical and physical cross-linking reactions are performed to increase their technological and functional properties. Owning to the broad-scale applications of microbial polysaccharides, this review aims to summarize the characteristics with different ways of physical/chemical crosslinking for polysaccharide regulation. Recently, several biopolymers have gained high importance due to their biologically active properties. This will help in the formation of bioactive nutraceuticals and functional foods. This review provides a perspective on microbial polysaccharides, with special emphasis given to applications in promising biosectors and the subsequent advancement on the discovery and development of new polysaccharides for adding new products.


Subject(s)
Polysaccharides , Tissue Engineering , Drug Delivery Systems , Polymers , Alginates , Biopolymers
4.
Environ Sci Pollut Res Int ; 28(35): 47752-47772, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34291408

ABSTRACT

Human papillomavirus (HPV) is a well-known sexually transmitted disorder globally. Human papillomavirus (HPV) is the 3rd most common cancer that causes cervical carcinoma, and globally it accounts for 275,000 deaths every year. The load of HPV-associated abrasions can be lessened through vaccination. At present, three forms of prophylactic vaccines, Cervarix, Gadrasil, and Gardasil 9, are commercially accessible but all these prophylactic vaccines have not the ability to manage and control developed abrasions or infections. Therefore, a considerable amount of the population is not secured from HPV infectivity. Consequently, the development of therapeutic HPV vaccines is a crucial requirement of this era, for the treatment of persisting infections, and to stop the progression of HPV-associated cancers. Therapeutic vaccines are a developing trial approach. Because of the constitutive expression of E6 and E7 early genes in cancerous and pre-cancerous tissues, and their involvement in disturbance of the cell cycle, these are best targets for this therapeutic vaccine treatment. For the synthesis and development of therapeutic vaccines, various approaches have been examined comprising cell-based vaccines, peptide/protein-based vaccines, nucleic acid-based vaccines, and live-vector vaccines all proceeding towards clinical trials. This review emphasizes the development, progress, current status, and future perspective of several vaccines for the cure of HPV-related abrasions and cancers. This review also provides an insight to assess the effectiveness, safety, efficacy, and immunogenicity of therapeutic vaccines in the cure of patients infected with HPV-associated cervical cancer.


Subject(s)
Alphapapillomavirus , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Papillomaviridae , Papillomavirus Infections/prevention & control , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...