Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0299246, 2024.
Article in English | MEDLINE | ID: mdl-38484016

ABSTRACT

Batrachochytrium dendrobatidis (Bd) is a lethal fungal species that parasitizes vertebrates and is associated with the worldwide decline of amphibian populations. The development of sensitive, rapid detection methods, particularly DNA-based techniques, is critical for effective management strategies. This study evaluates the efficacy of DNA extraction and a portable PCR device in a mountable field laboratory setup for detecting Bd near the habitats of three critically endangered Atelopus toad species in Ecuador. We collected skin swabs from Atelopus balios, A. nanay, and A. bomolochos, and environmental DNA (eDNA) samples from streams in Andean and coastal regions of Ecuador. For eDNA, a comparison was made with duplicates of the samples that were processed in the field and in a standard university laboratory. Our findings revealed Bd detection in eDNA and swabs from 6 of 12 water samples and 10 of 12 amphibian swab samples. The eDNA results obtained in the field laboratory were concordant with those obtained under campus laboratory conditions. These findings highlight the potential of field DNA-based monitoring techniques for detecting Bd in amphibian populations and their aquatic habitats, particularly in remote areas. Furthermore, this research aligns with the National Action Plan for the Conservation of Ecuadorian Amphibians and contributes to the global effort to control this invasive and deadly fungus.


Subject(s)
Chytridiomycota , DNA, Environmental , Humans , Animals , Batrachochytrium/genetics , Ecuador , Chytridiomycota/genetics , Bufonidae/genetics , Amphibians/microbiology , DNA , Ecosystem
2.
Sci Total Environ ; 763: 142956, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33129533

ABSTRACT

Although pesticides are frequently used for agriculture in the Galapagos Islands (Ecuador), there are, to date, no investigations of pesticide occurrences in its coastal waters. We examined the presence of pesticide residues in the coastal waters of urban areas in two islands of the Galapagos archipelago using a repeated sampling design. Quantification was performed by solid-phase extraction, followed by chemical analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-electron capture detector (GC-ECD). The diversity and concentration of pesticide residues in Santa Cruz island were higher compared to Isabela island. In total, sixteen pesticides were detected, including three persistent organic pollutants. Carbendazim (23.93 µg·L-1), cadusafos (4.74 µg·L-1), DDT (2.99 µg·L-1), diuron (1.61 µg·L-1) and aldrin (1.55 µg·L-1) were detected with the highest concentrations between samples. Repetitions in locations show that concentrations of pesticide residues varied considerably in space and time. Comparison with local products indicated agricultural activities on the islands as a possible source. Furthermore, evaluation through ecological risk quotients showed that the observed concentration levels of seven pesticides pose a relatively high risk for three biotic groups (i.e. algae, invertebrates and fishes). Taken together, this study provides insights into the need to regulate, monitor and assess the presence of pesticides in the islands. At a global scale, this study is moreover valuable for the many islands that are facing the same challenges.

SELECTION OF CITATIONS
SEARCH DETAIL
...