Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10129, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349521

ABSTRACT

The objective of this study was to investigate the effects of the interaction between corn grain processing and protein source on feed intake, growth performance, rumen fermentation, and blood metabolites of dairy calves. Seventy-two 3-day-old Holstein calves with an initial weight of 39.1 ± 3.24 kg were randomly assigned (n = 12 calves (6 male and 6 female) per treatment) to a 2 × 3 factorial arrangement of treatments with the factors of physical form of the corn grain [coarsely ground (CG) and steam-flaked (SF)] and protein type [canola meal (CAN), canola meal + soybean meal (CASY), and soybean meal (SOY)] were assigned. The study showed a significant correlation between corn grain processing method and protein source on calf performance, including starter feed intake, total dry matter intake (DMI), body weight, average daily gain (ADG), and feed efficiency (FE). The CG-CAN and SF-SOY treatments resulted in the highest feed intake and DMI in the post-weaning and total period, respectively. Interestingly, corn processing did not affect feed intake, ADG, and FE, but the highest ADG was observed at SF-SOY and CG-CAN. In addition, the interaction between corn processing method and protein source improved FE in calves fed CG-CAN and SF-SOY during the preweaning period and throughout the period. Although skeletal growth parameters were unchanged, calves fed SOY and CASY had greater body length and withers height than calves fed CAN during the preweaning period. Rumen fermentation parameters were also not affected by the treatments, except that calves fed CAN had a higher molar proportion of acetate than calves fed SOY and CASY. Corn grain processing and protein source did not affect glucose, blood urea nitrogen (BUN), or ß-hydroxybutyrate (BHB) concentrations, except for the highest blood glucose level observed in the CAN treatment and the highest BUN level observed in the preweaned calves fed SOY. However, a two-way interaction was observed for BHB concentration, suggesting that ground corn grain resulted in higher BHB concentration during the preweaning and postweaning periods than steam-flaked corn. In summary, it is recommended to incorporate canola meal with ground corn or soybean meal with steam-flaked corn in calf starters to enhance calf growth.


Subject(s)
Diet , Zea mays , Animals , Cattle , Female , Male , 3-Hydroxybutyric Acid , Animal Feed/analysis , Body Weight , Diet/veterinary , Fermentation , Rumen/metabolism , Steam , Zea mays/metabolism
2.
J Dairy Sci ; 101(11): 10495-10504, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30172396

ABSTRACT

High-producing dairy cows with high pre-calving body condition score (BCS) are more susceptible to metabolic disorders and oxidative stress. The aim of present study was to evaluate the effects of close-up BCS and 3 times Se-vitamin E (SeE) injection on BCS change, blood metabolites, oxidative status, and milk yield in high-producing Holstein cows. A total of 136 multiparous cows were divided into 2 groups based on their BCS including high (HB = 4.00 ± 0.20) and moderate (MB = 3.25 ± 0.25) at 3 wk before expected calving time. Then, each group was divided into 2 subgroups: 3 rounds of SeE injection at 21 d before, and 0 and 21 d after calving (+SeE), and no SeE injection (-SeE). Four final experimental groups were HB+SeE, MB+SeE, HB-SeE, and MB-SeE (34 cows each). Results indicated that interaction effect of BCS and SeE affected serum glucose, and the MB+SeE group had the highest level. The HB cows lost more BCS compared with MB cows during the postcalving period. Moreover, serum insulin concentration increased after SeE injection. The HB cows had higher serum nonesterified fatty acids at 14 d after calving. The MB cows tended to have higher activity of blood glutathione peroxidase over the study period. Furthermore, the SeE-injected cows tended to have higher activity of blood glutathione peroxidase at 28 d after calving. Serum albumin level was increased by SeE injection. The HB cows had greater milk production than MB cows, and SeE-injected cows tended to have higher milk fat percentage and higher fat:protein ratio compared with nonsupplemented cows. It was concluded that SeE injection had beneficial effects on some blood metabolites, albumin as a blood antioxidative parameter, and lactation performance in high-producing dairy cows, especially cows with moderate close-up BCS.


Subject(s)
Cattle/physiology , Lactation/drug effects , Milk/metabolism , Selenium/administration & dosage , Vitamin E/administration & dosage , Animals , Fatty Acids, Nonesterified/blood , Female , Glutathione Peroxidase/blood , Insulin/blood , Oxidative Stress , Serum Albumin/analysis
3.
J Anim Physiol Anim Nutr (Berl) ; 101(4): 755-766, 2017 Aug.
Article in English | MEDLINE | ID: mdl-26841335

ABSTRACT

This study evaluated the effects of physical form of starter feed and forage provision on the performance, blood metabolites, liver composition and intestinal morphology of dairy calves. Individually housed calves (n = 52; body weight = 41.5 ± 2.5 kg) were randomly allocated (n = 13 per treatment) to one of the following four treatments: (i) ground starter feed (GS; mean particle size = 0.72 mm in diameter), (ii) textured starter feed (TS; mean particle size = 3.61 mm in diameter, including steam-flaked corn and barley), (iii) pelleted starter feed (PS; mean particle size = 4.53 mm in diameter) and (iv) ground starter feed with chopped alfalfa hay (GS + AH; mean particle size = 1.02 mm in diameter). The calves fed GS + AH diets had greater (p < 0.01) starter intake, final body weight and average daily gain compared with the other groups, while GS and TS groups both had greater (p < 0.01) starter intake than the PS group. Feed efficiency was found to be better (p < 0.05) in the TS group than in the GS or PS group, but not different from the GS + AH one. Compared with the other groups, the GS + AH group had the highest (p < 0.01), while the PS one had the lowest (p < 0.01) concentrations of blood glucose and triglyceride. The calves fed GS + AH had the highest blood concentrations of total protein, globulin, triiodothyronine (T3), thyroxin (T4), T3 : T4 ratio (p < 0.05) and levels of fat and glycogen in the liver (p < 0.01) compared with the other groups. The highest (p < 0.05) liver glycogen contents were observed in the GS + AH and TS groups. The duodenum, ileum and jejunum in the calves fed GS + AH exhibited a greater muscle layer thickness (p < 0.05) compared with the other groups. Based on the results obtained, the addition of dietary forage to starter diets positively influenced performance, liver composition and intestinal morphology in developing calves.


Subject(s)
Animal Feed/analysis , Cattle/blood , Cattle/physiology , Diet/veterinary , Intestines/anatomy & histology , Liver/chemistry , Animal Nutritional Physiological Phenomena , Animals , Digestion/physiology , Male , Weight Gain
4.
Animal ; 11(2): 219-226, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27453160

ABSTRACT

Intensive selection of broilers for faster growth and better feed efficiency resulted in greater susceptibility to metabolic disorders such as ascites syndrome, which is one of the major causes of mortality and economic loss in broiler industry. Whereas cool temperature is one of the primary triggers for ascites, early feed restriction (FDR) significantly alleviates its incidence and mortality. However, little is known about effects of FDR, cold environmental temperature and their interaction on physiological responses in broiler chickens. For this purpose, 320 one-day-old male broilers were divided into two treatment groups of Ad libitum (Ad) and feed restricted (FR) with eight pen replicates each. Chickens in FR group underwent feed access limitation from days 7 to 14 of age. On day 21 half of the birds (four pens) in each group exposed to the cold temperature (CT) and the other half (four pens) continued at normal temperature (NT). Average daily feed intake, average daily weight gain and feed conversion ratio (FCR) were measured at days 7, 14, 21, 28 and 42. At 39 and 46 days of age two chicks with a BW around the pen average were selected from each pen and slaughtered after collecting blood samples. Then, relative weight of internal organs and right ventricle weight per total ventricle weight (RV : TV) ratio were calculated. Compared with NT group, CT birds had higher daily feed intake and FCR (P<0.05) from day 28 to 42. Cumulative ascites mortality in CT chickens was higher (P<0.001) than NT chicks. Within the CT group, ascites mortality in FR chickens was reduced (P<0.001) to 1.25% compared with 8.75% in Ad chicks. Birds in CT group had significantly (P<0.05) thicker right ventricle and greater relative weight of heart, hematocrit and triiodothyronine concentration. However, none of these parameters were affected by FDR. Under cold stress conditions, FDR reduced activity of alanine aminotransferase and aspartate aminotransferase (P<0.05). Serum triglyceride, cholesterol, high-density lipoprotein and total protein were not influenced by either temperature or feeding regimen. In conclusion, these findings suggest that FDR reduces ascites incidence mainly by allowing better development of internal organs, which helps them to cope with the high metabolic pressure and suffer less damage.


Subject(s)
Ascites/veterinary , Chickens , Poultry Diseases/prevention & control , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Ascites/prevention & control , Body Weight , Cold Temperature , Diet/veterinary , Food Deprivation , Incidence , Male , Weight Gain
5.
J Anim Sci ; 94(2): 678-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27065138

ABSTRACT

Introducing forage in the young calf diet during the milk-feeding period stimulates rumen development. It was hypothesized that performance in dairy calves would depend on forage provision and starter physical form such that the textured starter (TS) feed with corn silage (CS) supplementation would benefit calf performance. This study evaluates the effects of the physical form of starter diets and CS supplementation on performance, rumen fermentation characteristics, and structural growth of dairy calves. Forty-eight 3-d-old Holstein dairy calves with a mean starting BW of 42.1 kg (SD 2.4) were used in a 2 × 2 factorial arrangement with the factors dietary CS level (0 or 15% on DM basis) and physical form of starter (mashed vs. textured). Individually housed calves were randomly assigned ( = 12 calves per treatment: 6 males and 6 females) to 4 treatments: 1) a mashed starter (MS) feed with no CS (MS-NCS), 2) a MS feed with CS (MS-CS), 3) a TS feed with no CS (TS-NCS), and 4) a TS feed with CS (TS-CS). The calves had ad libitum access to water and starter throughout the study. All calves were weaned on d 56 of age and remained in the study until d 66. The interaction of the physical form of the starter and CS provision was significant ( < 0.01) for the starter intake, with the greatest intake for TS-CS treatment during the preweaning and overall periods. Regardless of the physical form of starter, starter intake, ADG, weaning BW, final BW, ruminal pH, the molar proportion of acetate, and the acetate-to-propionate ratio were greater ( < 0.01) for CS-supplemented calves compared with unsupplemented calves. No interaction ( > 0.05) was detected between the physical form of starter and CS provision with respect to the rumen fermentation parameters and body measurements. Total rumen VFA concentration and the molar proportion of propionate were greater ( < 0.01) in calves fed TS compared with MS-fed calves. In conclusion, independent of the physical form of starter, inclusion of 15% CS in starter diets improves the performance of dairy calves.


Subject(s)
Animal Feed/analysis , Cattle/growth & development , Cattle/metabolism , Rumen/metabolism , Silage/analysis , Zea mays/chemistry , Animals , Body Weight , Diet/veterinary , Dietary Supplements , Feeding Behavior , Female , Fermentation , Male , Propionates/pharmacology , Weaning
6.
J Anim Physiol Anim Nutr (Berl) ; 100(1): 178-88, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25816899

ABSTRACT

The objective of this study was to determine the effect of partial replacement of barley grain with beet pulp (BP) on dry matter intake (DMI), ruminal fermentation, plasma concentration of metabolites and milk yield of transition dairy cows. Twenty-four multiparous Holstein cows [735 ± 26 kg of body weights and 3.5 ± 0.05 of body condition score (BCS)] were used in a randomized complete block design. Cows were assigned randomly on day 28 relative to expected parturition date to one of three treatments containing (i) 0% BP, (ii) 25% BP or (iii) 50% BP substituted for barley grain on a DM basis. During the pre-partum period, DMI and energy intake were greater (P < 0.01) in cows fed the BP diet compared with cows fed the barley grain diet. During the post-partum period, substituting BP for barley grain caused a response in DMI and energy intake, with the highest amount for the 25% BP diet and lowest for the 50% BP diet (P < 0.01). Milk yield was lowest (P < 0.01) for 50% BP diet than the other treatments. During the post-partum period, cows fed the 50% BP diets had greater rumen pH, molar proportion of butyrate and acetate: propionate ratio (P < 0.01) in the rumen compared with cows fed the 0% BP diets. In addition, cows fed the BP diets had greater (P < 0.01) plasma ß-hydroxybutyrate and lower plasma glucose (P < 0.05) and blood urinary nitrogen (BUN) (P < 0.01) concentrations than cows fed the barley grain diets. Results showed that substituting BP for barley grain was effective in increasing DMI, but it did not have a significant effect on net energy balance during the post-partum period. However, replacing BP for barley grain at 50% had adverse effects on DMI, milk yield and metabolic status, as indicated by key blood metabolite concentrations.


Subject(s)
Animal Feed/analysis , Beta vulgaris/chemistry , Cattle/physiology , Hordeum/chemistry , Rumen/physiology , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose , Diet/veterinary , Feeding Behavior , Female , Fermentation , Lactation/physiology , Postpartum Period
7.
J Anim Physiol Anim Nutr (Berl) ; 99(5): 924-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25846572

ABSTRACT

This study aimed to investigate chemical composition and effect of different levels (0%, 10% and 20%) of raw grass pea (RGP) and heat-treated (120 °C for 30 min) grass pea seed (HGP) on nutrient digestibility, dressing percentage, relative internal organ weights, intestinal villous morphology and broiler chicks' performance. A total number of 200 day-old male chicks were raised under similar condition for 10 days. On day 11, chicks were randomly assigned to five dietary treatments and four replicates of 10 birds each. The result of chemical analysis indicated that Iranian grass pea seed has low levels of total and condensed tannin, and it may be considered as a good source of protein (36.1%) and energy (17.09 kJ GE/g). Heat treatment reduced (p < 0.05) the total and condensed tannin to 21% and 78% respectively. Grass peas seed had higher levels of nitrogen-free extract, P, Na, Mg and Zn than soya bean meal. The apparent digestibility of gross energy and lipid was affected (p < 0.01) by the treatment diets, and it was the lowest after feeding 20% of HGP (p < 0.05). The relative weight of breast and pancreas (p < 0.05) was affected by treatments. Percentage weight of breast and pancreas increased (p < 0.05) after feeding high levels (20%) of RGP and HGP. Substitution of 20% of RGP and HGP increased the duodenal crypt depth (p < 0.05); however, it had no suppressive effect on villus height as the absorptive surface of intestine. The feed conversion ratio was not affected by the treatments in the total experimental period. This study showed that, although the high level of grass pea seed caused a remarkable increase in the relative weight of pancreas and decreased the apparent digestibility of gross energy and lipid, it had beneficial effect on breast relative weight. It seems that heat processing is not effective method for improving quality of Iranian grass pea seed.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Digestion/physiology , Lathyrus/chemistry , Seeds/chemistry , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Proteins , Energy Intake , Food Handling , Hot Temperature , Intestines/drug effects , Lipid Metabolism , Lipids/chemistry , Male
8.
J Anim Physiol Anim Nutr (Berl) ; 99(3): 553-64, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25039298

ABSTRACT

The aim of this study was to assess the effects of particle size (PS) of alfalfa hay on growth characteristics and rumen development in dairy calves at two levels of alfalfa supplementation. Fifty newborn dairy calves (42.7 ± 2.2 kg BW) were used in a 2 × 2 factorial arrangement with the factors supplementation level (low, 8%; or high, 16% on DM basis) and PS (medium, 2.92 mm; or long, 5.04 mm as geometrical means) of alfalfa hay. In addition, a control group without alfalfa hay was used. Hence, treatments were: control (C); low level with medium PS (LM); low level with long PS (LL); high level with medium PS (HM) or high level with long PS (HL). Growth performance of alfalfa-fed calves did not differ from control calves, but alfalfa supplementation decreased corneum thickness of the rumen wall. In alfalfa-fed calves, post-weaning starter intake was greater for LL calves than for LM calves. During the entire rearing period, starter intake was 26-32% higher for LL and HM calves than for LM calves. Pre-weaning average daily gain was higher for LL and HM calves than for HL calves, but this effect was not persistent over the entire rearing period. Final body weight decreased from 86 to 79 kg when the level of long PS alfalfa hay increased from 8 to 16%, but increased from 78 to 87 kg when the level of medium PS alfalfa increased from 8 to 16%. Regardless of PS and level, morphometric characteristics of rumen wall were generally similar among alfalfa feeding groups, but corneum thickness decreased from 8.7 to 6.1 µm with greater PS at the low level. These results indicate that adequate, but not excessive, physical stimulation is required for appropriate rumen development and growth performance of dairy calves.


Subject(s)
Animal Feed/analysis , Cattle/growth & development , Dietary Supplements , Medicago sativa/chemistry , Rumen/growth & development , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Male , Particle Size
9.
Prev Vet Med ; 118(1): 45-55, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25466761

ABSTRACT

The study investigated the effects of a mixture of herbal plants (HM) and two sources of unsaturated fatty acids (FA), extruded linseed (LS) and soybean (SB), on metabolic profile, insulin sensitivity, and oxidative status of transition dairy cows. Thirty-two prepartum Holstein cows, blocked by parity and calving day, were randomly assigned to 1 of 4 treatments, in a 2×2 factorial design, starting from 25 days before the expected calving date to 26 days postpartum. The supplementation rates of HM were 150 and 170 g/animal/day at pre- and postpartum, respectively. Blood samples were analyzed for metabolites on day 7.15±1.70 prepartum and on days 1 and 21 postpartum. An intravenous glucose tolerance test (IV-GTT) was conducted on day 25 postpartum. Data showed that cows supplemented with HM had lower serum concentration of NEFA (0.395 vs. 0.602±0.044 mmol/L; P<0.01) and NEFA to insulin ratio (P<0.01) postpartum. Compared to animals fed SB-based diets, cows fed the LS-based diet had greater serum glucose concentration during prepartum (80.7 vs. 71.3±3.32 mg/dL; P=0.06) and postpartum period (86.3 vs. 73.5±3.35 mg/dL; P=0.01), as well as lower NEFA (0.425 vs. 0.572±0.044 mmol/L; P=0.03) and insulin to glucose ratio (P<0.01) postpartum. Revised quantitative insulin-sensitivity check index revealed that supplementing HM in LS-based diet improved insulin sensitivity (0.45 vs. 0.41±0.013; P=0.03) prepartum, whereas after parturition, the HM addition was effective for both oil seeds (0.40 vs. 0.37±0.008; P=0.06) in enhancing insulin sensitivity. Result of IV-GTT indicated that cows fed LS-based diets had higher basal glucose concentration (63.7 vs. 55.7±2.37; mg/dL; P=0.02) and lower glucose area under the curve (995.8 vs. 1529.5±100.7; mg/dL×45 min; P<0.01). Supplementing HM resulted in greater total antioxidant capacity prepartum (0.55 vs. 0.48±0.017 nmol/L; P=0.01) and lower malondialdehyde concentration at prepartum (1.03 vs. 1.96±0.140 µmol/L; P<0.01) and postpartum (1.32 vs. 1.88±0.178 µmol/L; P=0.04). Although feeding LS ameliorated insulin resistance, this feeding strategy lowered total antioxidant capacity prepartum (0. 48 vs. 0.55±0.017 nmol/L; P<0.01) and increased malondialdehyde concentration postpartum more than the SB diet (1.91 vs. 1.28±0.172 µmol/L; P=0.02). Overall, both HM supplementation and LS feeding improved metabolic profile and insulin response following glucose infusion, although feeding of LS-based diets induced an increased oxidative stress.


Subject(s)
Cattle/metabolism , Glycine max , Insulin Resistance , Linseed Oil , Oxidative Stress , Plant Preparations/administration & dosage , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose , Cattle/blood , Dairying , Diet/veterinary , Female , Linseed Oil/administration & dosage , Malondialdehyde/blood , Parity , Postpartum Period , Pregnancy , Random Allocation , Seeds
10.
Zygote ; 23(4): 573-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24964001

ABSTRACT

Heat shock may affect different aspects of oocyte maturation and its subsequent development to the blastocyst stage. A series of in vitro experiments was performed to determine whether physiologically heat shock (41°C) disrupts the progression of the ovine oocytes through meiosis, activation and blastocyst formation. Cumulus-oocyte complexes (COCs) were aspirated from 2-6-mm follicles and cultured at 38.5°C (control) or 41°C (heat shock) for the first 12 h of maturation. The oocytes were incubated at 38.5°C during the last 10 h of maturation and 8 days after activation. Results showed that most of the oocytes matured under heat-shock conditions remained at the germinal vesicle breakdown (GVBD) stage and they showed an aberrant chromatin configuration. After heat shock, oocyte diameter and time spent for zona pellucida dissolution increased (P < 0.05). The heat-shocked group had a higher percentage of oocytes with incomplete migration of cortical granules (P < 0.05). The heat-shock condition decreased (P < 0.05) cleavage rates (56.19 versus 89.28%) and morula formation (26.85 versus 37.81%). However, there was no significant difference in blastocyst formation and percentage of hatched blastocysts. At 12 h, heat shock had an adverse effect on embryo quality and reduced inner cell mass number (P < 0.05). Quantitative gene expression analysis showed greater transcripts (P < 0.05) for Na/K-ATPase mRNA in heat-shocked oocytes. To sum up, heat shock has disruptive effects on ovine oocyte maturation and can impair cellular and molecular factors that are important for embryo development.


Subject(s)
Blastocyst/physiology , Heat-Shock Response/physiology , Meiosis , Oocytes/physiology , Animals , Chromatin/ultrastructure , Estrogens/metabolism , Female , Gene Expression Regulation, Developmental , In Vitro Oocyte Maturation Techniques , Oocytes/ultrastructure , Parthenogenesis , Progesterone/metabolism , Sheep , Zona Pellucida/ultrastructure
11.
Cryobiology ; 69(3): 482-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25445572

ABSTRACT

Clove bud (Syzygium aromaticum) extract was added at concentrations of 0, 35, 75, and 115 µg/ml to ovine semen extenders in order to investigate the antioxidant activities of clove bud extract and its effects on semen quality parameters after cryopreservation of ram spermatozoa. The basic extender was composed of Tris, egg yolk, and glycerol. Two other extenders were prepared by substitution of egg yolk with either LDL or egg yolk+SDS. The DPPH inhibition test was employed to assess the antioxidant activity of clove bud extract. Results showed that, compared to vitamin E, clove bud extract had a higher antioxidant activity. Better sperm motility and movement characteristics (P<0.05) were observed in the semen diluted with medium containing egg yolk+SDS than in that containing egg yolk and LDL. Progressive motility and movement characteristics of the sperm were significantly improved (P<0.05) by adding 35 and/or 75 µg/ml of clove bud extract to semen extenders. Sperm viability and plasma membrane integrity were also higher (P<0.05) in the semen exposed to medium containing egg yolk+SDS and 75 µg of clove buds extract after cryopreservation processes. Higher levels of clove bud extract, however, had adverse effects on all the sperm quality parameters and significantly reduced (P<0.05) the motility, movement parameters, viability, and plasma membrane integrity of ovine sperm. It was concluded that the clove bud extract had an antioxidant potential that makes it useful for addition to semen extenders and that the best results are obtained with a maximum clove bud extract of 75 µg/ml. Moreover, the combination of egg yolk and a detergent was found to improve sperm quality after the cooling and freeze-thawing processes.


Subject(s)
Antioxidants/metabolism , Cryopreservation/veterinary , Plant Extracts/metabolism , Semen Preservation/veterinary , Sheep/physiology , Spermatozoa/cytology , Syzygium/chemistry , Animals , Antioxidants/chemistry , Biphenyl Compounds/metabolism , Cryopreservation/methods , Cryoprotective Agents/chemistry , Cryoprotective Agents/metabolism , Detergents/metabolism , Egg Yolk/metabolism , Lipoproteins, LDL/metabolism , Male , Picrates/metabolism , Plant Extracts/chemistry , Semen Analysis , Semen Preservation/methods , Sodium Dodecyl Sulfate/metabolism , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism
12.
Animal ; 8(11): 1826-31, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25322789

ABSTRACT

The objective of this study was to determine the effects of pistachio by-product silage (PBPS) as a partial replacement for corn silage (CS) on chewing activity, nutrients digestibility and ruminal fermentation parameters in Holstein male calves over a 6-month assay. For this purpose, 24 Holstein male calves (4 to 5 months of age and 155.6±13.5 kg BW) were randomly assigned to one of the four dietary treatments (n=6). In these treatments, CS was substituted with different levels of PBPS (0%, 6%, 12% and 18% of dry matter (DM)). Nutrient digestibility was measured at the end of the experimental period (days 168 to 170). Ruminal fermentation parameters were determined on days 90 and 180 and chewing activity was determined on days 15 of the 3rd and 6th month of the experiment. Results showed that calves fed rations containing 6% PBPS spent more time ruminating (P<0.05) than the control group on the 3rd and 6th months. Feeding PBPS was found to have no effects on DM, organic matter (OM), ether extract or ash digestibility, but apparent digestibility of CP, NDFom and ADFom linearly decreased (P<0.01) with increasing substitutions. On days 90 and 180, ruminal concentrations of volatile fatty acids and NH3-N linearly decreased (P<0.01) with increasing levels of PBPS in the diets; however, ruminal pH and molar proportions of acetate, propionate and butyrate were similar across the treatments. It was concluded that partial substitution of CS with PBPS (6% or 12%) would have no adverse effects on nutrient digestibility, total chewing activity and ruminal fermentation parameters.


Subject(s)
Cattle/physiology , Digestion/drug effects , Mastication/drug effects , Pistacia/chemistry , Plant Extracts/pharmacology , Silage/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Diet/veterinary , Dose-Response Relationship, Drug , Fermentation/drug effects , Male , Random Allocation , Rumen/drug effects , Rumen/metabolism
13.
J Dairy Sci ; 97(12): 7487-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25306268

ABSTRACT

This study evaluated the effects of dietary supplementation of a novel phytobiotics-rich herbal mixture (PRHM) on feed intake, performance, udder health, ruminal fermentation, and plasma metabolites in cows with moderate or high somatic cell counts (SCC) in the milk. Twenty-four Holstein dairy cows (117 ± 26 d in milk and 46.3 ± 4.7 kg of milk/d at the start of the experiment) were blocked by parity and days in milk and split into 2 groups, based on SCC in the milk; 12 cows were with moderate SCC (260,000500,000 cells/mL) in the milk. Within each SCC group, cows were blocked by milk yield and parity, and were randomly assigned to 2 different feeding regimens. Half of the cows in each SCC group (n=6) were supplemented with PRHM (185 g/cow per day, providing 12.4 g of phenolic compounds per day), and the other half (n=6) were not supplemented in their diets. The experiment lasted 36 d, whereby the first 24 d were used for adaptation to the diets and the last 12 d for sampling. Data showed that supplementation of PRHM decreased somatic cell score in the milk, indicating improved udder health of cows with high initial SCC, but not in cows with moderate SCC. Also, cows supplemented with PRHM consumed more feed DM, produced greater amounts of milk, and showed an improvement of feed utilization efficiency. However, these cows also lost more back-fat thickness during the experiment. Supplementation of PRHM increased fat- and energy-corrected milk yields in cows with high initial SCC, but not in cows with moderate SCC. Supplementation of PRHM decreased milk fat content, whereas other milk components were not affected by PRHM feeding. The PRHM supplementation decreased the acetate-to-propionate ratio in the rumen fluid, but increased ß-hydroxybutyrate and cholesterol concentration in the plasma, irrespective of the initial SCC level in the milk. Other plasma metabolites and liver enzymes were not affected by PRHM supplementation. Apparent nutrient digestibility did not differ among treatments. Overall, supplementation of PRHM seems to be an effective strategy to enhance performance and lower SCC, particularly in cows having high SCC levels in the milk. Further research is warranted to evaluate long-term effects of PRHM supplementation, especially with regard to metabolic health status and reproduction.


Subject(s)
Cattle/physiology , Dietary Supplements , Lactation/drug effects , Milk/metabolism , Plant Preparations/pharmacology , Animal Nutritional Physiological Phenomena , Animals , Cell Count , Diet/veterinary , Female , Fermentation , Mammary Glands, Animal/drug effects , Milk/cytology , Pregnancy
14.
J Anim Physiol Anim Nutr (Berl) ; 97(6): 1022-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23009309

ABSTRACT

This study investigated physiological effects of pistachio by-products silage (PBPS) substituted in Holstein male calves diets and its effects on the growth performance. Twenty-four Holstein male calves (4-5 months of age and 155.6 ± 13.5 kg BW) were randomly assigned to one of four experimental diets (n = 6); contained 0%, 6%, 12% and 18% of PBPS (DM basis) respectively. During a 6-month experiment, dry matter intake (DMI) and weight gain were recorded and blood and urine samples were collected at different times. Results showed that mean DMI was not affected by different levels of PBPS in diets. But the calves fed 6% PBPS had the highest average daily gain (p < 0.05) and the lowest feed conversion ratio (p < 0.05). The calves fed 12% and 18% PBPS had lower albumin, white blood cell, haemoglobin and packed cell volume (p < 0.05) than those fed other diets. However, other serum metabolites, complete blood count (CBC), insulin and liver enzymes were not affected by the experimental diets. The long-term feeding of PBPS at different levels had no significant effect (p > 0.05) on pH, specific gravity, the number of white and red blood cells and epithelial cells count in urine. The animals did not show any symptom of illness or toxicity during the experimental period and all of the blood and urine parameters were in a normal range. It was concluded that substitution of PBPS up to 18% of the total diet that provide up to 18.2 g/kg DM total tannin had no adverse effects for Holstein male calves.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/blood , Cattle/growth & development , Diet/veterinary , Pistacia/chemistry , Silage/analysis , Animals , Cattle/urine , Male
15.
Asian-Australas J Anim Sci ; 25(5): 642-7, 2012 May.
Article in English | MEDLINE | ID: mdl-25049608

ABSTRACT

Eight continuous culture fermenters were used in a completely randomized design to evaluate various nutritional values of Kochia (Kochia scoparia) compared with Atriplex (Atriplex dimorphostegia). Dried and pelleted samples (leaves and stems) provided substrate for metabolism by ruminal microbes maintained in a continuous culture fermentation system. Results indicated that there were no differences (p>0.05) in dry matter (DM) and crude protein (CP) digestibility between the two halophytic plants. Atriplex had higher (p<0.05) organic matter (OM) digestibility compared with Kochia. Neutral detergent fiber (aNDF) digestibility of Atriplex (411 g/kg) was higher (p<0.05) than that of Kochia (348 g/kg), however acid detergent fiber (ADF) digestibility was higher (p<0.05) in Kochia compared with Atriplex (406 vs. 234 g/kg). There were no differences (p>0.05) between the two halophytic plants in molar proportion of acetate and propionate, but the concentration of butyrate and valerate in Kochia were about two fold of Atriplex (p<0.05). When Kochia provided substrate to the microbes, protein synthesis was higher (p<0.05) compared with feeding Atriplex (5.96 vs. 4.85 g N/kg of OM truly digested). It was concluded that Kochia scoparia and Atriplex dimorphostegia had similar digestibility of DM and CP. It appears that these halophytic plants may not have enough digestible energy for high producing ruminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...