Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 255: 105326, 2023 09.
Article in English | MEDLINE | ID: mdl-37414116

ABSTRACT

The growing consumption of fermented products has led to an increasing demand for lactic acid bacteria (LAB), especially for LAB tolerant to freezing/thawing conditions. Carnobacterium maltaromaticum is a psychrotrophic and freeze-thawing resistant lactic acid bacterium. The membrane is the primary site of damage during the cryo-preservation process and requires modulation to improve cryoresistance. However, knowledge about the membrane structure of this LAB genus is limited. We presented here the first study of the membrane lipid composition of C. maltaromaticum CNCM I-3298 including the polar heads and the fatty acid compositions of each lipid family (neutral lipids, glycolipids, phospholipids). The strain CNCM I-3298 is principally composed of glycolipids (32%) and phospholipids (55%). About 95% of glycolipids are dihexaosyldiglycerides while less than 5% are monohexaosyldiglycerides. The disaccharide chain of dihexaosyldiglycerides is composed of α-Gal(1-2)-α-Glc chain, evidenced for the first time in a LAB strain other than Lactobacillus strains. Phosphatidylglycerol is the main phospholipid (94%). All polar lipids are exceptionally rich in C18:1 (from 70% to 80%). Regarding the fatty acid composition, C. maltaromaticum CNCM I-3298 is an atypical bacterium within the genus Carnobacterium due to its high C18:1 proportion but resemble the other Carnobacterium strains as they mostly do not contain cyclic fatty acids.


Subject(s)
Carnobacterium , Membrane Lipids , Fatty Acids , Phospholipids
2.
J Chem Phys ; 148(18): 184702, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29764126

ABSTRACT

An artificial oil-in-water emulsion analogous to those found in bioresources or food matrices is simulated and studied experimentally. It is composed of one of the major natural free fatty acids (the oleic acid, OA) and the corresponding triacylglyceride (trioleic glyceride, or triolein, GTO). Because of the large time and length scales involved, the molecular simulations are done with the Martini force field, a coarse-grained model. This allowed us to study the water-OA-GTO system at different compositions with more than 20 000 molecules and up to 2 µs. Interfacial tension was measured using the pendant drop method and compared with molecular simulation results. We observe very good agreement at high OA concentrations and deviations up to 15% at low OA concentrations. The water solubility in the lipid phase is in fair agreement with experiments, between 0.03 and 0.32 mol/l, rising with the OA content. The area occupied by OA and GTO at the interface between water and the pure product fitted with experimental data (AOA = 36.6 Å2 and AGTO = 152.1 Å2). The consistency between simulation and experimental results allowed a structural analysis of the interface. A bilayer structure of the lipids at the water/oil interface is proposed, containing preferentially oleic acid but also triolein. Through all these results, the usefulness of coarse-grained simulation for the description of water-oil interfacial organization is demonstrated. This method will be used later to bring local information on the organization of target compounds, necessary in biomass fractionation processes or food additive formulations, for example.

3.
Magn Reson Chem ; 46(6): 550-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18357571

ABSTRACT

It is very important to monitor the characteristics of triacylglycerol crystal network in fats, as these crystals have an impact on many food properties such as texture, sensory taste, and extended shelf life. Although time-domain NMR (TD-NMR) is now the reference technique to determine the solid fat index in food, the entire possibilities of this technique are not used. Some NMR studies have been performed to determine its power for the discrimination of polymorphism. In this study, extended investigations proved that TD-NMR could evaluate triacylglycerol (TA) polymorphism, independently from temperature and chain length. Study of the dipolar interactions through second moment M(2), which is characteristic of proton mobility in solid-state samples, provided a new understanding of the structural organization of crystal molecules. Proton spin-lattice relaxation, which has been proved to be a true probe of polymorphism, has provided information on crystal networks. Combination of the two techniques revealed two very interesting kinds of results, i.e. the presence of a minimum spin-lattice relaxation time T(1) for tristearin alpha, which is a characteristic of a dynamic molecular process, and differences in behavior between long and short chain lengths, both at a molecular and a crystal level.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Triglycerides/chemistry , Molecular Conformation , Molecular Weight , Phase Transition , Sensitivity and Specificity , Spin Labels , Temperature
4.
J Agric Food Chem ; 51(20): 5900-5, 2003 Sep 24.
Article in English | MEDLINE | ID: mdl-13129292

ABSTRACT

The structural modification of globular proteins (bovine serum albumin, BSA) in the aqueous phase of emulsions produced by homogenization was studied using front-face fluorescence spectroscopy (FFFS). A series of hydrocarbon oil-in-water emulsions (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7.0) were homogenized to differing degrees with a high-speed blender and a high-pressure valve homogenizer. The wavelength of the maximum in the tryptophan emission spectrum (lambda(max)) of serum phases collected from the emulsions by centrifugation was measured and compared to lambda(max) values of BSA solutions subjected to the same homogenization conditions. There was no significant (p < 0.05) change in lambda(max) with homogenization conditions for BSA solutions. In contrast, lambda(max) of serum phases from emulsions blended for 2 min in a high-speed blender was significantly smaller (p < 0.05) than nontreated BSA solutions (Deltalambda(max) = 2 nm). In addition, there was a further significant decrease in lambda(max) of the serum phases with an increasing number of passes of the emulsion through the high-pressure valve homogenizer (e.g., Deltalambda(max) = 4 nm for 12 passes). This study shows that globular proteins present in the aqueous phase of a hexadecane-in-water emulsion after homogenization could be altered, which is probably caused by surface modification of the protein structure during temporary adsorption to emulsion droplet surfaces during homogenization.


Subject(s)
Alkanes/chemistry , Serum Albumin, Bovine/chemistry , Water , Adsorption , Chemical Phenomena , Chemistry, Physical , Drug Stability , Emulsions , Molecular Structure , Particle Size , Spectrometry, Fluorescence
5.
J Agric Food Chem ; 51(9): 2482-9, 2003 Apr 23.
Article in English | MEDLINE | ID: mdl-12696924

ABSTRACT

The displacement of a globular protein (bovine serum albumin, BSA) from the surface of oil droplets in concentrated oil-in-water emulsions by a nonionic surfactant (polyoxyethylene sorbitan monolauarate, Tween 20) was studied using front-face fluorescence spectroscopy (FFFS). This method relies on measurement of the change in intensity (I(MAX)) and wavelength (lambda(MAX)) of the maximum in the tryptophan emission spectrum. A series of oil-in-water emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7.0) containing different molar ratios of Tween 20 to BSA (R = 0-131) were prepared. As the surfactant concentration was increased, the protein was progressively displaced from the droplet surfaces. At R > or = 66, the protein was completely displaced from the droplet surfaces. There was an increase in both I(MAX) and lambda(MAX) with increasing Tween 20 concentration up to R = 66, which correlated with the increase in the ratio of nonadsorbed to adsorbed protein. In contrast, there was a decrease in I(MAX) and lambda(MAX) with Tween 20 concentration in protein solutions and for R > or = 66 in the emulsions, which was attributed to binding of the surfactant to the protein. This study shows that FFFS is a powerful technique for nondestructively providing information about the interfacial composition of droplets in concentrated protein-stabilized emulsions in situ. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.


Subject(s)
Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods , Surface-Active Agents/chemistry , Adsorption , Emulsions/chemistry , Particle Size , Polysorbates , Serum Albumin, Bovine/analysis , Surface-Active Agents/analysis , Water
6.
J Agric Food Chem ; 51(9): 2490-5, 2003 Apr 23.
Article in English | MEDLINE | ID: mdl-12696925

ABSTRACT

Measurement of the intensity (I(MAX)) and/or wavelength (lambda(MAX)) of the maximum in the tryptophan (TRP) emission spectrum using front-face fluorescence spectroscopy (FFFS) can be used to provide information about the molecular environment of proteins in nondiluted emulsions. Many protein-stabilized emulsions in the food industry are flocculated, and therefore, we examined the influence of droplet flocculation on FFFS. Stock oil-in-water emulsions stabilized by bovine serum albumin were prepared by high-pressure valve homogenization (30 wt % n-hexadecane, 0.35 wt % BSA, pH 7). These emulsions were used to create model systems with different degrees of droplet flocculation, either by changing the pH, adding surfactant, or adding xanthan. Emulsions (21 wt % n-hexadecane, 0.22 wt % BSA) with different pH (5 and 7) and molar ratios of Tween 20 to BSA (R = 0-131) were prepared by dilution of the stock emulsion. As the surfactant concentration was increased, the protein was displaced from the droplet surfaces, which caused an increase in both I(MAX) and lambda(MAX), because of the change in TRP environment. The dependence of I(MAX) and lambda(MAX) on surfactant concentration followed a similar pattern in emulsions that were initially flocculated (pH 5) and nonflocculated (pH 7). Relatively small changes in FFFS emission spectra were observed in emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7) with different levels of depletion flocculation induced by adding xanthan. These results suggested that droplet flocculation did not have a major impact on FFFS. This study shows that FFFS is a powerful technique for nondestructively providing information about the molecular environment of proteins in concentrated and flocculated protein-stabilized emulsions. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.


Subject(s)
Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence/methods , Chemical Phenomena , Chemistry, Physical , Emulsions/chemistry , Flocculation , Hydrogen-Ion Concentration , Particle Size , Polysaccharides, Bacterial/pharmacology , Surface-Active Agents/pharmacology
7.
Meat Sci ; 51(1): 73-9, 1999 Jan.
Article in English | MEDLINE | ID: mdl-22061538

ABSTRACT

The dependence of solid fat content at 20°C of adipose tissues on their fatty acid and triacylglycerol compositions was studied on lipids extracted from tissues from 166 pigs. The solid fat content (SFC20) was 20% on average but varied widely (9-35%). The SFC20 variability was closely related to the proportions of disaturated triacylglycerols and more specifically to palmitoyl-stearoyl-oleoyl-glycerol (R(2)=0.92). The SFC20 variability was also related to the proportions of the saturated fatty acids, palmitic and stearic acids (R(2)=0.94). The part of the variance of SFC20 explained by the proportion of polyunsaturated fatty acids was lower (R(2)=0.48). The iodine value showed a high correlation with SFC20 (R(2)=0.81) but carcass lean content was a poor indicator of the solid fat content of adipose tissues (R(2)=0.06).

SELECTION OF CITATIONS
SEARCH DETAIL
...