Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(40): 92842-92858, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495807

ABSTRACT

The unprecedented stride of urbanization and industrialization has given rise to anthropogenic input of tiny particulates into the air. Urban particulate matter (PM) armored with potentially toxic metals (PTMs) could be lethal to the environment and human health. Therefore, the present study was planned to investigate the spectroscopic fingerprinting, pollution status and health risk of PM-associated PTMs collected from ten functional areas of Lahore, Pakistan. The diverged results of studied qualitative and quantitative analyses showed distinct compositional and pollution characteristics of PTMs in urban PM with respect to selected functional areas. The XRD results evident the fractional presence of metal-containing minerals, i.e., pyrite (FeS2), calcite (CaCO3), zinc sulfate (ZnSO4), and chalcostibite (CuSbS2). Several chemical species of Zn, Pb, and As were found in PM of various functional areas. However, morphologies of PM showed anthropogenic influence with slight quantitative support of PTMs presence. The cumulative representation of PTMs pollution of all selected areas depicted that Cd was heavily polluted (Igeo=3.21) while Cr (Igeo=1.82) and Ni (Igeo=2.11) were moderately polluted PTMs. The industrial area having high pollution status of Cd (Igeo=5.54 and EF=18.07), Cu (Igeo=6.4 and EF=32.61), Cr (Igeo=4.03 and EF=6.53), Ni (Igeo=5.7 and EF=20.17), and Zn (Igeo=4.87 and EF=11.27) was prominent among other studied areas. The PTMs were likely to pose a high non-cancerous risk in IndAr (HI = 7.48E+00) and HTV (HI = 1.22E +00) areas predominantly due to Zn with HQ > 1. However, Cr was prominent to cause cancerous risks with values beyond the tolerable range (1.00E-04 to 1.00E-06).


Subject(s)
Environmental Monitoring , Metals, Heavy , Humans , Environmental Monitoring/methods , Particulate Matter/analysis , Cadmium/analysis , Metals, Heavy/analysis , Risk Assessment , China
2.
Front Plant Sci ; 13: 997120, 2022.
Article in English | MEDLINE | ID: mdl-36160978

ABSTRACT

Being sessile organisms, plants cannot escape unwanted changes in the environment. The rapid human population explosion caused significant environmental problems. Heavy metals produced through various sources can cause severe damage to living organisms. The study was planned to evaluate four grass species' morpho-physiological growth characteristics and phytoremediation capabilities under chromium (Cr) and lead stress (Pb) in the arid climate. Typha angustifolia, Tragus roxburghii, Aeluropus logopoides, and Cenchrus ciliaris grass species were used for the study. One-year-old stubbles from the Cholistan desert were used for the experiment. Cr treatments in the form of K2Cr2O7 were applied at 0, 20, 40, and 80 mg L-1, whereas Pb was applied as PbCl2 at 0, 50, 200, and 500 mg L-1 as control, low, moderate and high-stress, respectively. After 6 weeks of heavy metals treatments, plants were harvested and analyzed for growth performance and phytoremediation capabilities. Results depicted that, regarding morphological attributes, T. angustifolia performed better, followed by C. ciliaris; no clear pattern was observed for T. roxburghii and A. logopoides. The CO2 assimilation rate (Co2d) and water use efficiency (WUE) increased as the heavy metal stress increased in all species under both metals. In contrast, total chlorophyll content was higher under low stress. Other physiological parameters, such as relative humidity (RHd), net photosynthetic rate (A), transpiration rate (E), stomatal conductance (Gs), leaf internal CO2 concentration (Ci) and membrane stability index (MSI) gradually decreased as the Cr, and Pb stress levels increased among all the species. Moreover, Cr and Pb absorption contents of T. angustifolia were higher than the other three species at each stress level. Overall, T. angustifolia thrived against heavy metals stress and showed higher biomass, maximum photosynthetic measurements, WUE and higher metal absorption among all the selected species. Results concluded that although all the selected species behaved fine under stress conditions, T. angustifolia performance was better; thus, it can be used to remediate the soil near industrial estates.

3.
Front Plant Sci ; 13: 923410, 2022.
Article in English | MEDLINE | ID: mdl-35909763

ABSTRACT

Nitrogen (N) is often recognized as the primary limiting nutrient element for the growth and production of forests worldwide. Litterfall represents a significant pathway for returning nutrients from aboveground parts of trees to the soils and plays an essential role in N availability in different forest ecosystems. This study explores the N transformation processes under litterfall manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor tree mixed forest (MCMF) stands in subtropical southern China. The litterfall manipulation included litterfall addition (LA), litterfall removal (LR), and litterfall control (LC) treatments. The project aimed to examine how litterfall inputs affect the soil N process in different forest types in the study region. Results showed that soil ammonium N (NH4 +-N) and nitrate N (NO3 --N) content increased under LA treatment and decreased under LR treatment compared to LC treatment. LA treatment significantly increased soil total inorganic N (TIN) content by 41.86 and 22.19% in MPPF and MCMF, respectively. In contrast, LR treatment decreased the TIN content by 10 and 24% in MPPF and MCMF compared to LC treatment. Overall, the soil net ammonification, nitrification, and N mineralization rates were higher in MCMF than in MPPF; however, values in both forests were not significantly different. LA treatment significantly increased annual net ammonification, nitrification, and mineralization in both forest types (p < 0.05) compared to LC treatment. LR treatment significantly decreased the values (p < 0.05), except for ammonification, where LR treatment did not differ substantially compared to LC treatment. Our results suggested that changes in litterfall inputs would significantly alter soil N dynamics in studied forests of sub-tropical region. Moreover, mixed forest stands have higher nutrient returns due to mixed litter and higher decomposition compared to pure forest stands.

4.
Plants (Basel) ; 10(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34961205

ABSTRACT

Genus Ziziphus (Z.) contains various important species in tropical and subtropical regions that are globally famous for their food and medicinal uses. However, no comprehensive study was available on the morphology and phytochemistry of Ziziphus species, mainly under different growth conditions, i.e., irrigated and desert (Cholistan). Therefore, this study was carried out to evaluate the morphological and phytochemical characteristics of Ziziphus species, i.e., Z. jujuba, Z. mauritiana, Z. spina-christi, and Z. nummularia, found in the irrigated and desert conditions. Our results revealed significant variations for most of the measured parameters, showing a large-scale diversity among Ziziphus species under irrigated and desert conditions. Specifically, Ziziphus species showed better morphology of all measured parameters of leaves and fruits under irrigated conditions compared to desert conditions, indicating that the optimum water availability in irrigated conditions improved the morphological parameters of Z. species. Meanwhile, among all Ziziphus species, the maximum leaf length (7.4 cm), leaf width (4.1 cm), leaf area (30.6 cm2), and leaf petiole length (1.3 cm) were observed for Z. jujuba, and the highest leaf dry weight (55.4%) was recorded for Z. mauritiana. Similarly, the highest fruit length (3.9 cm), fruit stalk length (1.5 cm), fruit diameter (3.6 cm), fruit width (3.8 cm), fruit area (66.1 cm2), seed length (2 cm), and seed diameter (1.1 cm) were measured for species Z. jujuba, while the maximum fruit dry weight (49.9%) and seed width (1.4 cm) were recorded for species Z. nummularia. Interestingly, compared to irrigated conditions, higher values of bioactive contents, i.e., phenol, flavonoid, and antioxidant activity, in fruits and leaves of Ziziphus species under desert conditions indicated the positive impact of desert climate on the phytochemistry of the Z. plants. Among Ziziphus species, Z. nummularia accumulated the maximum fruit phenols (304.4 mg GAE/100 g), leaf phenols (314.2 mg GAE/100 g), fruit flavonoids (123.7 mg QE/100 g), and leaf flavonoids (113.4 mg QE/100 g). Overall, this study demonstrated the significant morphological and phytochemical variations of the Ziziphus species under irrigated and desert conditions, which could be utilized for future studies to improve the production and medicinal potential of the Ziziphus, especially in desert areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...