Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11705, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778064

ABSTRACT

A serious environmental problem that threatens soil quality, agricultural productivity, and food safety is heavy metal pollution in water sources. Heavy metal pollution is the main problem in tehsil Pasrur, Sialkot, Pakistan. Present study was arranged to notice the heavy metals in water, soil, forages and buffalo milk. There are seven sites that were used for this experiment. Highest malondialdehyde (MDA) contents (3.00 ± 0.01) were noticed in barseem roots at site 7. Ascorbate Peroxidase (APX) was reached at its peak (1.93 ± 0.01) at site 7 in the fresh barseem. Maximum protein contents (0.36 ± 0.01) were observed in fresh plant samples at site 2. Site 3's buffalo milk samples had the highest Ni content (7.22 ± 0.33 ppm), while Site 3's soil samples had the lowest Cr content (8.89 ± 0.56 ppm), Site 1's plant shoots had the lowest Cr content (27.75 ± 1.98 ppm), and Site 3's water had the highest Cr content (40.07 ± 0.49 ppm). The maximum fat content (5.38 ± 2.32%) was found in the milk of the animals at site 7. The highest density (31.88 ± 6.501%), protein content (3.64 ± 0.33%), lactose content (5.54 ± 0.320%), salt content (0.66 ± 0.1673%), and freezing point (- 0.5814 ± 0.1827 °C) were also observed in the milk from animals at site 7, whereas site 5 displayed the highest water content (0.66 ± 0.1673%) and peak pH value (11.64 ± 0.09). In selected samples, the pollution load index for Ni (which ranged from 0.01 to 1.03 mg/kg) was greater than 1. Site 7 has the highest conductivity value (5.48 ± 0.48). Values for the health risk index varied from 0.000151 to 1.00010 mg/kg, suggesting that eating tainted animal feed may pose health concerns. Significant health concerns arise from metal deposition in the food chain from soil to feed, with nickel having the highest health risk index.


Subject(s)
Metals, Heavy , Milk , Soil Pollutants , Soil , Animals , Metals, Heavy/analysis , Soil Pollutants/analysis , Milk/chemistry , Milk/metabolism , Pakistan , Soil/chemistry , Water Pollutants, Chemical/analysis , Animal Feed/analysis , Buffaloes , Environmental Monitoring/methods , Malondialdehyde/metabolism , Malondialdehyde/analysis
2.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654167

ABSTRACT

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Subject(s)
Azospirillum brasilense , Charcoal , Soil , Triticum , Triticum/metabolism , Azospirillum brasilense/physiology , Soil/chemistry , Dehydration , Droughts
4.
Front Plant Sci ; 14: 1242836, 2023.
Article in English | MEDLINE | ID: mdl-37780503

ABSTRACT

A cell wall determines the mechanical properties of a cell, serves as a barrier against plant stresses, and allows cell division and growth processes. The COBRA-Like (COBL) gene family encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that controls cellulose deposition and cell progression in plants by contributing to the microfibril orientation of a cell wall. Despite being studied in different plant species, there is a dearth of the comprehensive global analysis of COBL genes in poplar. Poplar is employed as a model woody plant to study abiotic stresses and biomass production in tree research. Improved genome resequencing has enabled the comprehensive exploration of the evolution and functional capacities of PtrCOBLs (Poplar COBRA-Like genes) in poplar. Phylogeny analysis has discerned and classified PtrCOBLs into two groups resembling the Arabidopsis COBL family, and group I genes possess longer proteins but have fewer exons than group II. Analysis of gene structure and motifs revealed PtrCOBLs maintained a rather stable motif and exon-intron pattern across members of the same group. Synteny and collinearity analyses exhibited that the evolution of the COBL gene family was heavily influenced by gene duplication events. PtrCOBL genes have undergone both segmental duplication and tandem duplication, followed by purifying selection. Promotor analysis flaunted various phytohormone-, growth- and stress-related cis-elements (e.g., MYB, ABA, MeJA, SA, AuxR, and ATBP1). Likewise, 29 Ptr-miRNAs of 20 families were found targeting 11 PtrCOBL genes. PtrCOBLs were found localized at the plasma membrane and extracellular matrix, while gene ontology analysis showed their involvement in plant development, plant growth, stress response, cellulose biosynthesis, and cell wall biogenesis. RNA-seq datasets depicted the bulk of PtrCOBL genes expression being found in plant stem tissues and leaves, rendering mechanical strength and rejoinders to environmental cues. PtrCOBL2, 3, 10, and 11 manifested the highest expression in vasculature and abiotic stress, and resemblant expression trends were upheld by qRT-PCR. Co-expression network analysis identified PtrCOBL2 and PtrCOBL3 as hub genes across all abiotic stresses and wood developing tissues. The current study reports regulating roles of PtrCOBLs in xylem differentiating tissues, tension wood formation, and abiotic stress latency that lay the groundwork for future functional studies of the PtrCOBL genes in poplar breeding.

5.
Funct Integr Genomics ; 23(3): 212, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368046

ABSTRACT

In recent years, significant progress has been made in understanding the biosynthetic pathway and regulation of flavonoids through forward genetic approaches. However, there remains a notable gap in knowledge regarding the functional characterization and underlying processes of the transport framework responsible for flavonoid transport. This aspect requires further investigation and clarification to achieve a comprehensive understanding. Presently, there are a total of four proposed transport models associated with flavonoids, namely glutathione S-transferase (GST), multidrug and toxic compound extrusion (MATE), multidrug resistance-associated protein (MRPs), and bilitranslocase-homolog (BTL). Extensive research has been conducted on the proteins and genes related to these transport models. However, despite these efforts, numerous challenges still exist, leaving much to be explored in the future. Gaining a deeper understanding of the mechanisms underlying these transport models holds immense potential for various fields such as metabolic engineering, biotechnological approaches, plant protection, and human health. Therefore, this review aims to provide a comprehensive overview of recent advancements in the understanding of flavonoid transport mechanisms. By doing so, we aim to paint a clear and coherent picture of the dynamic trafficking of flavonoids.


Subject(s)
Flavonoids , Plants , Humans , Biological Transport , Plants/genetics , Glutathione Transferase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
PeerJ ; 11: e14983, 2023.
Article in English | MEDLINE | ID: mdl-36967996

ABSTRACT

Sustainable maize production under changing climatic conditions, especially heat and water stress conditions is one of the key challenges that need to be addressed immediately. The current field study was designed to evaluate the impact of water stress on morpho-physiological, biochemical, reactive oxygen species, antioxidant activity and kernel quality traits at different plant growth stages in maize hybrids. Four indigenous i.e., YH-5427, YH-5482, YH-5395, JPL-1908, and one multinational maize hybrid i.e., NK-8441 (Syngenta Seeds) were used for the study. Four stress treatments (i) Control (ii) 3-week water stress at pre-flowering stage (iii) 3-week water stress at anthesis stage (iv) 3-week water stress at grain filling/post-anthesis stage. The presence of significant oxidative stress was revealed by the overproduction of reactive oxygen species (ROXs) i.e., H2O2 (1.9 to 5.8 µmole g-1 FW) and malondialdehyde (120.5 to 169.0 nmole g-1 FW) leading to severe negative impacts on kernel yield. Moreover, a severe reduction in photosynthetic ability (50.6%, from 34.0 to 16.8 µmole m-2 s-1), lower transpirational rate (31.3%, from 3.2 to 2.2 mmol m-2 s-1), alterations in plant anatomy, reduced pigments stability, and deterioration of kernel quality was attributed to water stress. Water stress affected all the three studied growth stages, the pre-flowering stage being the most vulnerable while the post-anthesis stage was the least affected stage to drought stress. Antioxidant activity was observed to increase under all stress conditions in all maize hybrids, however, the highest antioxidant activity was recorded at the anthesis stage and in maize hybrids YH-5427 i.e., T-SOD activity was increased by 61.3% from 37.5 U mg-1 pro to 60.5 U mg-1 pro while CAT activity was maximum under water stress conditions 8.3 U mg-1 pro as compared to 10.3 U mg-1 pro under control (19.3%). The overall performance of maize hybrid YH-5427 was much more promising than other hybrids, attributed to its higher photosynthetic activity, and better antioxidant defense mechanism. Therefore, this hybrid could be recommended for cultivation in drought-prone areas.


Subject(s)
Antioxidants , Zea mays , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Dehydration , Hydrogen Peroxide/metabolism
7.
J Ethnopharmacol ; 306: 116151, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36638853

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bletilla striata (Thunb.) Reixchb.f. is a perennial herb of the Orchid-aceae Bletilla and have various ethnopharmacological uses. As a traditional astringent hemostatic Chinese herbal medicine, B. striata has been widely used in the treatment of 127 different kinds of hemorrhagic diseases. Moreover, B. striata has been a beauty medicine since ancient times, with the first ancient records dating back to 2000 years ago, traditionally used to removing freckle and smooth the skin. Because of the high content of polysaccharides, which is considered the primary active substance of B. striata and having anti-aging, whitening, and anti-oxidation functions, this is also widely used in the cosmetics industry. AIM: We screened the germplasm resources of B. striata in the early stage and the superior HL20 strain was obtained. Our research aims to analyze and compare the whitening and antimicrobial activities of different extracts (aqueous extract, ethanol extract, and aqueous extract from ethanol extract filter residue) of the selected superior varieties (HL20) and the control (WT). MATERIALS AND METHODS: L-tyrosine and L-dopa were used as substrates to establish a tyrosinase inhibition system with arbutin as the positive control and the whitening activity was measured by the inhibition rate of TYR-M and TYR-D. Besides, an in vitro antimicrobial susceptibility test was performed to assess the antimicrobial activity of the B. striata extracts. In a nutshell, the method of punching diffusion was used to thoroughly examine the effects of three extracts from two strains on the antimicrobial activity of five types of microorganism in cosmetics microbiological testing products. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of different extracts were also assessed. RESULTS: Results showed that the whitening and antimicrobial properties of the HL20 strain were found to be more potent than those of the WT strain. Compared with the other two extraction methods, the aqueous extract from ethanol extract filter residue of B. striata exhibited better inhibition of tyrosinase activity. The antimicrobial assay manifested that only the ethanol extract of B. striata had an inhibitory effect and had a potent antimicrobial impact on E. faecalis. CONCLUSIONS: In summary, we evaluated the pharmacological activity of the pre-selected excellent variety (HL20) in terms of whitening and antimicrobial activity. Our results reveal that the selected strain (HL20) has certain advantages over the control (WT). These characteristics make it a candidate additive for whitening cosmetics. Our study also provides a further contribution to the product application of B. striata in cosmetics and antimicrobial agents and the selected HL20 also lays a foundation for the breeding of superior B. striata varieties.


Subject(s)
Drugs, Chinese Herbal , Orchidaceae , Monophenol Monooxygenase , Plant Extracts/pharmacology , Drugs, Chinese Herbal/pharmacology , Skin , Ethanol , Orchidaceae/chemistry
8.
Plant Sci ; 327: 111566, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513314

ABSTRACT

Anoectochilus roxburghii is a rare and precious plant with medicinal and healthcare functions. Embryo abortion caused the lack of resources. Polyamine promoted its flowering and stress resistance in our previous study. But the mechanism remains unclear. The WRKY transcription factor family has been linked to a variety of biological processes in plants. In this study, two WRKY TFs (ArWRKY5 and ArWRKY20) of A. roxburghii, which showed significant response to Spd treatment, were identified and functionally analyzed. Tissue specific expression analyzation showed both of them mostly present in the flower. And ArWRKY5 expressed highest in the flower bud stage (-1 Flowering), while ArWRKY20 showed the highest expression in earlier flower bud stage (-2 Flowering) and the expression gradually decreased with flowering. The transcriptional activation activity assay and subcellular localization revealed that ArWRKY5 and ArWRKY20 were located in the nucleus and ArWRKY20 showed transcriptional activity. The heterologous expression of ArWRKY5 in Arabidopsis thaliana showed earlier flowering, while overexpression of ArWRKY20 delayed flowering. But the OE-ArWRKY20 lines had a robust body shape and a very significant increase in the number of rosette leaves. Furthermore, stamens and seed development were positively regulated by these two ArWRKYs. These results indicated that ArWRKY5 and ArWRKY20 not only play opposite roles in the floral development, but also regulate the plant growth and seed development in A. thaliana. But their specific biological functions and mechanism in A. roxburghii need to be investigated further.


Subject(s)
Orchidaceae , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism
9.
Aging Dis ; 13(6): 1745-1758, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36465173

ABSTRACT

The amyloid cascade hypothesis has always been a research focus in the therapeutic field of Alzheimer's disease (AD) since it was put forward. Numerous researchers attempted to find drugs for AD treatment based on this hypothesis. To promote the research of anti-AD drugs development, the current hypothesis and pathogenesis were reviewed with expounding of ß-amyloid generation from its precursor protein and related transformations. Meanwhile, the present drug development strategies aimed at each stage in this hypothesis were also summarized. Several strategies especially immunotherapy showed the optimistic results in clinical trials, but only a small percentage of them eventually succeeded. In this review, we also tried to point out some common problems of drug development in preclinical and clinical studies which might be settled through multidisciplinary cooperation as well as the understanding that reinforces the amyloid cascade hypothesis.

10.
Front Plant Sci ; 13: 1019347, 2022.
Article in English | MEDLINE | ID: mdl-36330239

ABSTRACT

Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.

11.
J Plant Physiol ; 279: 153835, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257086

ABSTRACT

Bud dormancy and its release are complex physiological phenomena in plants. The molecular mechanisms of bud dormancy in Liriodendron chinense are mainly unknown. Here, we studied bud dormancy and the related physiological and molecular phenomena in Liriodendron under long-day (LD) and short-day (SD). Bud burst was released faster under LD than under SD. Abscisic acid (ABA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities were increased significantly under LD in Liriodendron buds. In contrast, the contents of gibberellic acid (GA3), ascorbic acid (AsA), glutathione (GSH), malondialdehyde (MDA), and ascorbate peroxidase (APX) activity decreased under LD but increased under SD. Differentially expressed genes (DEGs) were up-regulated under LD and down-regulated under SD and these changes correspondingly promoted (LD) or repressed (SD) cell division and the number and/or size of cells in the bud. Transcriptomic analysis of Liriodendron buds under different photoperiods identified 187 DEGs enriched in several pathways such as flavonoid biosynthesis and phenylpropanoid biosynthesis, plant hormone and signal transduction, etc. that are associated with antioxidant enzymes, non-enzymatic antioxidants, and subsequently promote the growth of the buds. Our findings provide novel insights into regulating bud dormancy via flavonoid and phenylpropanoid biosynthesis, plant hormone and signal transduction pathways, and ABA content. These physiological and biochemical traits would help detect bud dormancy in plants.


Subject(s)
Liriodendron , Plant Growth Regulators , Plant Growth Regulators/metabolism , Photoperiod , Liriodendron/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Abscisic Acid/metabolism , Flavonoids , Plant Dormancy/genetics
12.
Genes (Basel) ; 13(8)2022 07 22.
Article in English | MEDLINE | ID: mdl-35893042

ABSTRACT

Protein kinases play an essential role in plants' responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I-IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Liriodendron , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study , Liriodendron/genetics , Photoperiod , Plant Proteins/metabolism , Plants/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics
13.
Front Plant Sci ; 13: 898823, 2022.
Article in English | MEDLINE | ID: mdl-35646037

ABSTRACT

Maize is one of the most important field crops considering its utilization as food, feed, fodder, and biofuel. However, the sustainability of its production is under serious threat of heat and drought stresses, as these stresses could hamper crop growth, causing a significant loss to kernel yield. The research study was carried out at Maize and Millets Research Institute, Yusafwala-Sahiwal for two consecutive spring seasons (2019-20 and 2020-21) under a split-split plot design. The current study explained the individual and combined effects of drought and heat stresses on morphology, phenology, physiology, reactive oxygen species (stocktickerROS), antioxidant status, and kernel quality traits in four indigenous (YH-5482, YH-5427, YH-5404, and YH-1898) and one multinational maize hybrid (P-1543). Stress treatments, i.e., drought, heat, and drought+heat, were applied ten days before tasseling and lasted for 21 days. The results revealed the incidence of oxidative stress due to overproduction of Hydrogen peroxide; H2O2 (control: 1.9, heat+drought: 5.8), and Malondialdehyde; stocktickerMDA (control: 116.5, heat+drought: 193), leading to reduced photosynthetic ability (control: 31.8, heat:16.5), alterations in plant morphology, decrease in kernel yield (control: 10865 kg ha-1, heat+drought: 5564 kg ha-1), and quality-related traits. Although all the stress treatments induced the accumulation of stress-responsive osmolytes and enzymatic antioxidants to cope with the negative impact of osmotic stress, the effect of combined drought + heat stress was much higher. The overall performance of indigenous maize hybrid YH-5427 was much more promising than the other hybrids, attributed to its better tolerance of drought and heat stresses. Such stress tolerance was attributed to maintaining photosynthetic activity, a potent antioxidant and osmolyte-based defense mechanisms, and minimum reductions in yield-related traits, which assured the maximum kernel yield under all stress treatments.

14.
BMC Plant Biol ; 21(1): 413, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34503442

ABSTRACT

BACKGROUND: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. RESULTS: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate  in pear fruits by real-time qRT-PCR. CONCLUSIONS: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Plant Proteins/genetics , Pyrus/genetics , Stress, Physiological/genetics , Abscisic Acid/pharmacology , Basic-Leucine Zipper Transcription Factors/metabolism , Chromosomes, Plant , Exons , Fragaria/genetics , Fruit/genetics , Fruit/growth & development , Gene Duplication , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Introns , Multigene Family , Phylogeny , Plant Proteins/metabolism , Pyrus/drug effects , Salicylates/pharmacology , Salicylic Acid/pharmacology , Synteny
15.
Front Plant Sci ; 12: 665501, 2021.
Article in English | MEDLINE | ID: mdl-34381472

ABSTRACT

Triticum aestivum xylanase inhibitor (TaXI) gene plays an important role in plant defense. Recently, TaXI-III inhibitor has been shown to play a dual role in wheat resistance to Fusarium graminearum infection. Thus, identifying the members of the TaXI gene family and clarifying its role in wheat resistance to stresses are essential for wheat resistance breeding. However, to date, no comprehensive research on TaXIs in wheat (Triticum aestivum L.) has been conducted. In this study, a total of 277 TaXI genes, including six genes that we cloned, were identified from the recently released wheat genome database (IWGSC RefSeq v1.1), which were unevenly located on 21 chromosomes of wheat. Phylogenetic analysis divided these genes into six subfamilies, all the six genes we cloned belonged to XI-2 subfamily. The exon/intron structure of most TaXI genes and the conserved motifs of proteins in the same subfamily are similar. The TaXI gene family contains 92 homologous gene pairs or clusters, 63 and 193 genes were identified as tandem replication and segmentally duplicated genes, respectively. Analysis of the cis-acting elements in the promoter of TaXI genes showed that they are involved in wheat growth, hormone-mediated signal transduction, and response to biotic and abiotic stresses. RNA-seq data analysis revealed that TaXI genes exhibited expression preference or specificity in different organs and developmental stages, as well as in diverse stress responses, which can be regulated or induced by a variety of plant hormones and stresses. In addition, the qRT-PCR data and heterologous expression analysis of six TaXI genes revealed that the genes of XI-2 subfamily have double inhibitory effect on GH11 xylanase of F. graminearum, suggesting their potential important roles in wheat resistance to F. graminearum infection. The outcomes of this study not only enhance our understanding of the TaXI gene family in wheat, but also help us to screen more candidate genes for further exploring resistance mechanism in wheat.

16.
Front Genet ; 12: 632155, 2021.
Article in English | MEDLINE | ID: mdl-33868370

ABSTRACT

The AP2/ERF is a large protein family of transcription factors, playing an important role in signal transduction, plant growth, development, and response to various stresses. AP2/ERF super-family is identified and functionalized in a different plant but no comprehensive and systematic analysis in wheat (Triticum aestivum L.) has been reported. However, a genome-wide and functional analysis was performed and identified 322 TaAP2/ERF putative genes from the wheat genome. According to the phylogenetic and structural analysis, TaAP2/ERF genes were divided into 12 subfamilies (Ia, Ib, Ic, IIa, IIb, IIc, IIIa, IIIb, IIIc, IVa, IVb, and IVc). Furthermore, conserved motifs and introns/exons analysis revealed may lead to functional divergence within clades. Cis-Acting analysis indicated that many elements were involved in stress-related and plant development. Chromosomal location showed that 320 AP2/ERF genes were distributed among 21 chromosomes and 2 genes were present in a scaffold. Interspecies microsynteny analysis revealed that maximum orthologous between Arabidopsis, rice followed by wheat. Segment duplication events have contributed to the expansion of the AP2/ERF family and made this family larger than rice and Arabidopsis. Additionally, AP2/ERF genes were differentially expressed in wheat seedlings under the stress treatments of heat, salt, and drought, and expression profiles were verified by qRT-PCR. Remarkably, the RNA-seq data exposed that AP2/ERF gene family might play a vital role in stress-related. Taken together, our findings provided useful and helpful information to understand the molecular mechanism and evolution of the AP2/ERF gene family in wheat.

17.
Front Genet ; 12: 784878, 2021.
Article in English | MEDLINE | ID: mdl-35211150

ABSTRACT

Superoxide dismutase (SOD) is an important enzyme that serves as the first line of defense in the plant antioxidant system and removes reactive oxygen species (ROS) under adverse conditions. The SOD protein family is widely distributed in the plant kingdom and plays a significant role in plant growth and development. However, the comprehensive analysis of the SOD gene family has not been conducted in Cucurbitaceae. Subsequently, 43 SOD genes were identified from Cucurbitaceae species [Citrullus lanatus (watermelon), Cucurbita pepo (zucchini), Cucumis sativus (cucumber), Lagenaria siceraria (bottle gourd), Cucumis melo (melon)]. According to evolutionary analysis, SOD genes were divided into eight subfamilies (I, II, III, IV, V, VI, VII, VIII). The gene structure analysis exhibited that the SOD gene family had comparatively preserved exon/intron assembly and motif as well. Phylogenetic and structural analysis revealed the functional divergence of Cucurbitaceae SOD gene family. Furthermore, microRNAs 6 miRNAs were predicted targeting 3 LsiSOD genes. Gene ontology annotation outcomes confirm the role of LsiSODs under different stress stimuli, cellular oxidant detoxification processes, metal ion binding activities, SOD activity, and different cellular components. Promoter regions of the SOD family revealed that most cis-elements were involved in plant development, stress response, and plant hormones. Evaluation of the gene expression showed that most SOD genes were expressed in different tissues (root, flower, fruit, stem, and leaf). Finally, the expression profiles of eight LsiSOD genes analyzed by qRT-PCR suggested that these genetic reserves responded to drought, saline, heat, and cold stress. These findings laid the foundation for further study of the role of the SOD gene family in Cucurbitaceae. Also, they provided the potential for its use in the genetic improvement of Cucurbitaceae.

18.
BMC Plant Biol ; 19(1): 577, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31870301

ABSTRACT

BACKGROUND: Seed dormancy is a prevailing condition in which seeds are unable to germinate, even under favorable environmental conditions. Harvested Brassica oleracea (Chinese cabbage) seeds are dormant and normally germinate (poorly) at 21 °C. This study investigated the connections between ethylene, nitric oxide (NO), and karrikin 1 (KAR1) in the dormancy release of secondary dormant Brassica oleracea seeds. RESULTS: NO and KAR1 were found to induce seed germination, and stimulated the production of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC), and both ethylene biosynthesis enzyme ACC oxidase (ACO) [1] and ACC synthase (ACS) [2]. In the presence of NO and KAR1, ACS and ACO activity reached maximum levels after 36 and 48 h, respectively. The inhibitor of ethylene 2,5-norbornadiene (NBD) had an adverse effect on Brassica oleracea seed germination (inhibiting nearly 50% of germination) in the presence of NO and KAR1. The benefits from NO and KAR1 in the germination of secondary dormant Brassica oleracea seeds were also associated with a marked increase in reactive oxygen species (ROS) (H2O2 and O2˙-) and antioxidant enzyme activity at early germination stages. Catalase (CAT) and glutathione reductase (GR) activity increased 2 d and 4 d, respectively, after treatment, while no significant changes were observed in superoxide dismutase (SOD) activity under NO and KAR1 applications. An increase in H2O2 and O2˙- levels were observed during the entire incubation period, which increasing ethylene production in the presence of NO and KAR1. Abscisic acid (ABA) contents decreased and glutathione reductase (GA) contents increased in the presence of NO and KAR1. Gene expression studies were carried out with seven ethylene biosynthesis ACC synthases (ACS) genes, two ethylene receptors (ETR) genes and one ACO gene. Our results provide more evidence for the involvement of ethylene in inducing seed germination in the presence of NO and KAR1. Three out of seven ethylene biosynthesis genes (BOACS7, BOACS9 and BOACS11), two ethylene receptors (BOETR1 and BOETR2) and one ACO gene (BOACO1) were up-regulated in the presence of NO and KAR1. CONCLUSION: Consequently, ACS activity, ACO activity and the expression of different ethylene related genes increased, modified the ROS level, antioxidant enzyme activity, and ethylene biosynthesis pathway and successfully removed (nearly 98%) of the seed dormancy of secondary dormant Brassica olereace seeds after 7 days of NO and KAR1 application.


Subject(s)
Antioxidants/metabolism , Brassica/physiology , Plant Dormancy , Plant Growth Regulators/pharmacology , Reactive Oxygen Species/metabolism , Seeds/physiology , Biosynthetic Pathways , Brassica/drug effects , Ethylenes/pharmacology , Furans/pharmacology , Nitric Oxide/pharmacology , Plant Dormancy/drug effects , Pyrans/pharmacology , Seeds/drug effects
19.
Int J Mol Sci ; 20(17)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466256

ABSTRACT

One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.


Subject(s)
Oryza/genetics , Plant Breeding/methods , Stress, Physiological , Triticum/genetics , Oryza/physiology , Quantitative Trait, Heritable , Triticum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...