Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 349: 140970, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114020

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Water/analysis , Alkanesulfonic Acids/analysis , Pakistan , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Fishes , Environmental Monitoring
2.
Sci Total Environ ; 856(Pt 2): 159144, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36183770

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a large group of chemicals reported in global environment and are responsible for various adverse impacts on humans and environment. We report a comprehensive study on occurrence of PFASs, including legacy, substitute and emerging ones, from Pakistan. Surface water samples were collected from five ecologically important freshwater reservoirs in Pakistan, namely, Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB), and Head Qadirabad (HQ). The detection frequencies of PFASs ranged between 37 %-100 %. The highest concentration of ∑15PFASs was detected at HP (114.1 ng L-1), whereas the lowest at HQ (19.9 ng L-1). Among the analyzed PFASs, 6:2 fluorotelomer sulfonic acid (6:2 FTS) and perfluorooctanoic acid (PFOA) showed maximum mean concentrations of 9.1 ng L-1 and 7 ng L-1 at HP, followed by Perfluorooctane sulfonic acid (PFOS) with level of 0.99 ng L-1 at HT. The ecological risk assessment for selected species i.e., daphnid, mysid, fish and green algae showed that PFOS, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA) exhibited moderate risk i.e., Hazard Quotients (HQs) < 1 to the modeled organisms, whereas perfluorobutane sulfonic acid (PFBS) showed the high risk to green algae (HQs = 8.6) and PFOA presented a high risk to all the organisms (HQs ranged between 1.04 and 7.38). The level of ∑PFASs at HP (114.1 ng L-1) exceed the EU guideline value of ∑PFASs in water (100 ng L-1), however the risk quotient (RQmix) values of all age groups were < 1 implying that the detected PFASs in water do not pose risk to human health. Source apportionment through Positive Matrix Factorization (PMF) showed that industrial effluent is the main source of PFASs in freshwater reservoirs. Comparable concentrations of legacy and substitute PFASs in this study indicate that legacy PFASs are still in use adjacent to ecologically important water reservoirs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Animals , Humans , Fluorocarbons/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Pakistan , Alkanesulfonic Acids/analysis , Fresh Water , Sulfonic Acids , Water , China
3.
Environ Pollut ; 291: 118006, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34543955

ABSTRACT

After decades of imposed regulations about reducing the primary emissions of persistent organic pollutants (POPs), these pollutants are still present in the environment. Soils are important repositories of such persistent semivolatile organic contaminants (SVOCs), and it is assumed that SVOCs sequestered in these reservoirs are being re-mobilized due to anthropogenic influence. In this study, concentrations of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in soil and air, their fugacities, fluxes and the soil-air partition coefficient (KSA) were determined for three different land cover types (glacial, remote/mountainous and urban) of the Lesser Himalayan Region (LHR). The concentrations of OCPs, PCBs and PBDEs in soils and air ranged between 0.01 and 2.8, 0.81-4.8, 0.089-0.75 ng g-1; 0.2-106, 0.027-182, and 0.011-7.26 pg m-3, respectively. The levels of SVOCs in the soil were correlated with soil organic matter (SOM) indicating that SOM is a substrate for the organic pollutants in soils. The Clausius-Clapeyron plots between ln P and inverse of temperature (1000/T) suggested that long range atmospheric transport was the major input source of PBDEs and higher chlorinated PCBs over the LHR. The uneven and wide distribution of local sources in LHR and up-slope enrichment of SVOCs explained the spatial variability and altitudinal patterns. The soils near mountain and urban lakes act as local sinks of SVOCs such as ß-HCH, pp΄-DDT, CB-28, -118, -153, BDE-47, -99, and -154, with soil-air exchange fluxes tending more toward deposition. However, the soils near glacial lakes acted as local sources of more volatile congeners of α-HCH, γ-HCH, op'-DDT, pp'-DDE and lower to medium chlorinated PCBs such as CB-18, -28, -53, -42 and BDE-47, -99, with soil-air exchange tending more toward volatilization flux.


Subject(s)
Air Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Soil Pollutants , Air Pollutants/analysis , Environmental Monitoring , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Soil , Soil Pollutants/analysis
4.
Biol Trace Elem Res ; 199(9): 3510-3526, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33409920

ABSTRACT

Issues regarding biomagnification of mercury (Hg) due to its persistence, bioaccumulation, and toxicity in freshwater lakes have gained much attention in the last two decades especially in remote regions of the world where anthropogenic inputs are considered as negligible. In this study, spatial distribution of total mercury (THg), interspecific accumulation patterns, trophic transfer, and associated health risks in fish of freshwater lakes (357-3107 masl) in Azad Kashmir, Pakistan, were investigated. THg concentrations in the regions were 0.20 ± 0.08 µg g-1 in glacial, 0.54 ± 0.21 µg g-1 in rural, and 1.35 ± 0.46 µg g-1 in urban region. Omnivorous, herbivorous, and carnivorous fish showed THg concentrations of 0.94, 0.85, and 0.49 µg g-1. Regional, lake, trophic level, and specie-specific differences of THg accumulation were found significant in the study. Among growth parameters, length and age varied significantly among species, trophic levels, and lakes, whereas weight showed significant variation among lakes as well. Condition factor (K) showed significant differences within species, lakes, and trophic levels. Biomagnification was observed in all lakes with the trophic magnification slopes (TMS) ranging from 0.03 to 0.20 with an average of 0.094 ± 0.07. Isotopic values of nitrogen (δ15N) and condition factor were found to dominate THg accumulation trends; however, no significant health risks were found in the study.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Fishes , Food Chain , Lakes , Mercury/analysis , Mercury/toxicity , Pakistan , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 760: 143351, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33183795

ABSTRACT

Fish dwelling in remote mountain water systems are sensitive to long term exposure of POPs and can be used as an important bioindicator of POPs pollution in fragile mountain ecosystems. Current study aimed to investigate the concentrations and patterns of organic pollutants in fish tissues from different lakes of the Lesser Himalayan Region (LHR). OCPs, PCBs, PBDEs were analyzed in four common edible fish species of the LHR: Oncorhynchus mykiss, Labeo rohita, Hypophthalmichthys molitrix and Orechromis aureus. The fish were collected from lakes with different types of catchment areas (glacial, non-glacial mountain region and urban region) and extent of anthropogenic influence. The levels OCPs, PCBs and PBDEs analyzed in the selected fish species were in range of 0.21-587, 6.4-138 and 1.2-14 ng g-1 lw, respectively. The ∑DDTs, higher chlorinated PCBs, tetra- and penta-BDEs were more prevalent in urban and remote lakes whereas pp'-DDE, lower chlorinated PCBs and BDE-47 and -99 were predominant in fish species from glacial lakes. ∑DDTs, ∑PCBs and ∑PBDEs showed statistically significant differences (p < 0.05) among species, trophic guilds (carnivore, herbivore and omnivore) and feeding regimes (surface, bottom and column feeder) and ∑HCH showed a significant difference only among trophic guilds. The stable isotope values of δ 15N and δ13C differed significantly among species for ∑HCH, ∑PCBs, ∑PBDEs (p < 0.05) and ∑DDT (p < 0.01). The range of δ13C values (-34 to -19‰) indicated the importance of littoral and pelagic sources of dietary carbon. Trophic position and dietary proxies were identified as important variables for explaining the variability of the studied compounds. Kohonen self-organizing maps (SOM) showed that in addition to trophic position and other physiological characteristics of fish, that the type of lakes and proximal sources of POPs were the most important predictors for distribution of organic contaminants in fish samples from LHR.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Halogenated Diphenyl Ethers , Lakes , Pakistan , Persistent Organic Pollutants , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 216: 640-652, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30391885

ABSTRACT

Lesser Himalayan Region (LHR) is an important mountain ecosystem which supports a wide range of biodiversity for native flora and fauna. Human population in this region is largely dependent upon local sources for their livelihood. Surface soil (n = 32) and sediment (n = 32) were collected from four different altitudinal ranges of LHR and analyzed for priority Polycyclic Aromatic Hydrocarbons (PAHs) recommended by USEPA. Level, sources and distribution pattern of PAHs were assessed in soil and sediments samples collected from four altitudinal zones in LHR. Total PAHs concentration level of PAHs in soil and sediments ranged from 62.79 to 1080 ng g-1 and 14.54-437.43 ng g-1, respectively. Compositional profile of PAHs in both soil and sediment were dominated by low and medium molecular weight PAHs, ranged from 18.02 to 402.18 ng g-1in soil and 0.32-96.34 ng g-1in sediments. In the context of spatial distribution trend, highest mean concentrations of PAHs in soil were recorded in zone D (sites from the rural region) and for sediments highest concentrations were detected at zone A, which includes dam sites. In all four zones, no altitudinal trend of PAHs in soil and sediments was observed. Source apportionment through receptor modelling by positive matrix factorization (PMF) revealed that local sources such as biomass combustion and vehicular emissions are important sources of PAHs in this region. The prevalence of monsoon atmospheric circulation system in LHR implicated that this region is also influenced by medium and long range atmospheric transportation of PAHs from neighboring countries where potential sources and high level of PAHs has been reported.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Humans , Pakistan , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry
7.
Sci Total Environ ; 621: 1568-1580, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29126639

ABSTRACT

Black carbon (BC) and total organic carbon (TOC) along with their relationship with organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were assessed in Lesser Himalayan Region (LHR) in different altitudinal zones based on anthropogenic influence/source proximity under the scope of this study. Results revealed the concentrations of BC, TOC, OCPs and PCBs varied between 0.3 and 43.5mgg-1, 1.7-65.4mgg-1, 0.59-3.64ngg-1 and 0.01-1.31ngg-1, respectively. Spatial distribution trends have shown higher levels of OCPs and PCBs contamination near populated and urban areas along the altitude. It is implicated that upslope, short and long-range transport and local emission sources contribute to the contamination of different altitudinal zones of LHR. The relationship of BC and TOC with OCPs and PCBs was evaluated using principal component analysis (PCA) and Pearson correlation analysis that indicated higher sorptive influence of BC over TOC in distribution status of organochlorines in LHR. Further research is required to find relationship of BC and TOC in surface riverine sediments, particularly in aquatic systems along the altitude in mountain regions of the world.

8.
Environ Pollut ; 236: 971-982, 2018 May.
Article in English | MEDLINE | ID: mdl-29153728

ABSTRACT

Black carbon and total organic carbon (TOC) along with organochlorines (OCs) were analyzed in soils from four sampling zones of Lesser Himalayan Region based on source proximity/anthropogenic influences along the altitude. CTO-375 method was used for BC analysis while OCs were analyzed by GC-MS/MS system. BC and TOC ranged between 0.16-1.77 and 6.8-41.3 mg g-1 while those of OCPs and PCBs ranged between 0.69 and 5.77 and 0.12-2.55 ng g-1, respectively. ∑DDTs were the dominant (87.9%) among OCPs while tri- and tetra- (65.5%) homologue groups among PCBs. Hexa-PCBs, however also showed higher contribution (20.4%) in the region. Source diagnostic ratios of DDE + DDD/DDT (0.1-1.53) indicated both fresh and old input while α-HCH/γ-HCH (0.19-2.49) showed presence of lindane in the region. Higher concentration of OCs were observed in Zone C at altitudinal range of 737-975 masl that are close to the human influences and potential sources of POPs. The results of linear regression analysis revealed potential input of BC in soil distribution of OC concentrations in the region.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Pesticides/chemistry , Soil Pollutants/chemistry , Soot/chemistry , Environmental Monitoring/methods , Hexachlorocyclohexane , Humans , Pakistan , Polychlorinated Biphenyls/analysis , Soil , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...