Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 21(8): 1821-33, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22486821

ABSTRACT

Metabarcoding approaches use total and typically degraded DNA from environmental samples to analyse biotic assemblages and can potentially be carried out for any kinds of organisms in an ecosystem. These analyses rely on specific markers, here called metabarcodes, which should be optimized for taxonomic resolution, minimal bias in amplification of the target organism group and short sequence length. Using bioinformatic tools, we developed metabarcodes for several groups of organisms: fungi, bryophytes, enchytraeids, beetles and birds. The ability of these metabarcodes to amplify the target groups was systematically evaluated by (i) in silico PCRs using all standard sequences in the EMBL public database as templates, (ii) in vitro PCRs of DNA extracts from surface soil samples from a site in Varanger, northern Norway and (iii) in vitro PCRs of DNA extracts from permanently frozen sediment samples of late-Pleistocene age (~16,000-50,000 years bp) from two Siberian sites, Duvanny Yar and Main River. Comparison of the results from the in silico PCR with those obtained in vitro showed that the in silico approach offered a reliable estimate of the suitability of a marker. All target groups were detected in the environmental DNA, but we found large variation in the level of detection among the groups and between modern and ancient samples. Success rates for the Pleistocene samples were highest for fungal DNA, whereas bryophyte, beetle and bird sequences could also be retrieved, but to a much lesser degree. The metabarcoding approach has considerable potential for biodiversity screening of modern samples and also as a palaeoecological tool.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA/analysis , Ecosystem , Fossils , Geologic Sediments/chemistry , Soil/chemistry , Animals , Computational Biology/methods , DNA/isolation & purification , DNA Primers , Environment , Norway , Polymerase Chain Reaction/methods , Siberia , Soil Microbiology
2.
Mol Ecol ; 21(8): 1834-47, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22486822

ABSTRACT

Almost all empirical studies in ecology have to identify the species involved in the ecological process under examination. DNA metabarcoding, which couples the principles of DNA barcoding with next generation sequencing technology, provides an opportunity to easily produce large amounts of data on biodiversity. Microbiologists have long used metabarcoding approaches, but use of this technique in the assessment of biodiversity in plant and animal communities is under-explored. Despite its relationship with DNA barcoding, several unique features of DNA metabarcoding justify the development of specific data analysis methodologies. In this review, we describe the bioinformatics tools available for DNA metabarcoding of plants and animals, and we revisit others developed for DNA barcoding or microbial metabarcoding. We also discuss the principles and associated tools for evaluating and comparing DNA barcodes in the context of DNA metabarcoding, for designing new custom-made barcodes adapted to specific ecological question, for dealing with PCR and sequencing errors, and for inferring taxonomical data from sequences.


Subject(s)
Computational Biology/methods , DNA Barcoding, Taxonomic/methods , Animals , Base Sequence , Biodiversity , DNA/analysis , DNA/genetics , DNA Primers , DNA, Plant/analysis , DNA, Plant/genetics , Plants/genetics , Species Specificity
3.
PLoS One ; 7(2): e32104, 2012.
Article in English | MEDLINE | ID: mdl-22393381

ABSTRACT

Accurate information about the diet of large carnivores that are elusive and inhabit inaccessible terrain, is required to properly design conservation strategies. Predation on livestock and retaliatory killing of predators have become serious issues throughout the range of the snow leopard. Several feeding ecology studies of snow leopards have been conducted using classical approaches. These techniques have inherent limitations in their ability to properly identify both snow leopard feces and prey taxa. To examine the frequency of livestock prey and nearly-threatened argali in the diet of the snow leopard, we employed the recently developed DNA-based diet approach to study a snow leopard population located in the Tost Mountains, South Gobi, Mongolia. After DNA was extracted from the feces, a region of ∼100 bp long from mitochondrial 12S rRNA gene was amplified, making use of universal primers for vertebrates and a blocking oligonucleotide specific to snow leopard DNA. The amplicons were then sequenced using a next-generation sequencing platform. We observed a total of five different prey items from 81 fecal samples. Siberian ibex predominated the diet (in 70.4% of the feces), followed by domestic goat (17.3%) and argali sheep (8.6%). The major part of the diet was comprised of large ungulates (in 98.8% of the feces) including wild ungulates (79%) and domestic livestock (19.7%). The findings of the present study will help to understand the feeding ecology of the snow leopard, as well as to address the conservation and management issues pertaining to this wild cat.


Subject(s)
Felidae/physiology , Animals , Behavior, Animal , Biodiversity , Conservation of Natural Resources , DNA Primers/genetics , Ecology , Ecosystem , Feces , Models, Biological , Mongolia , Oligonucleotides/chemistry , Polymerase Chain Reaction/methods , Predatory Behavior , Sequence Analysis, DNA , Sheep
4.
Mol Ecol ; 21(8): 1951-65, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22250784

ABSTRACT

Diet analysis is a prerequisite to fully understand the biology of a species and the functioning of ecosystems. For carnivores, traditional diet analyses mostly rely upon the morphological identification of undigested remains in the faeces. Here, we developed a methodology for carnivore diet analyses based on the next-generation sequencing. We applied this approach to the analysis of the vertebrate component of leopard cat diet in two ecologically distinct regions in northern Pakistan. Despite being a relatively common species with a wide distribution in Asia, little is known about this elusive predator. We analysed a total of 38 leopard cat faeces. After a classical DNA extraction, the DNA extracts were amplified using primers for vertebrates targeting about 100 bp of the mitochondrial 12S rRNA gene, with and without a blocking oligonucleotide specific to the predator sequence. The amplification products were then sequenced on a next-generation sequencer. We identified a total of 18 prey taxa, including eight mammals, eight birds, one amphibian and one fish. In general, our results confirmed that the leopard cat has a very eclectic diet and feeds mainly on rodents and particularly on the Muridae family. The DNA-based approach we propose here represents a valuable complement to current conventional methods. It can be applied to other carnivore species with only a slight adjustment relating to the design of the blocking oligonucleotide. It is robust and simple to implement and allows the possibility of very large-scale analyses.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Mitochondrial/genetics , Felidae/physiology , Predatory Behavior , RNA, Ribosomal/genetics , Sequence Analysis, DNA/methods , Animals , Behavior, Animal , DNA, Mitochondrial/analysis , Diet , Feces/chemistry , Oligonucleotides/genetics , Species Specificity
5.
Nucleic Acids Res ; 39(21): e145, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21930509

ABSTRACT

Using non-conventional markers, DNA metabarcoding allows biodiversity assessment from complex substrates. In this article, we present ecoPrimers, a software for identifying new barcode markers and their associated PCR primers. ecoPrimers scans whole genomes to find such markers without a priori knowledge. ecoPrimers optimizes two quality indices measuring taxonomical range and discrimination to select the most efficient markers from a set of reference sequences, according to specific experimental constraints such as marker length or specifically targeted taxa. The key step of the algorithm is the identification of conserved regions among reference sequences for anchoring primers. We propose an efficient algorithm based on data mining, that allows the analysis of huge sets of sequences. We evaluate the efficiency of ecoPrimers by running it on three different sequence sets: mitochondrial, chloroplast and bacterial genomes. Identified barcode markers correspond either to barcode regions already in use for plants or animals, or to new potential barcodes. Results from empirical experiments carried out on a promising new barcode for analyzing vertebrate diversity fully agree with expectations based on bioinformatics analysis. These tests demonstrate the efficiency of ecoPrimers for inferring new barcodes fitting with diverse experimental contexts. ecoPrimers is available as an open source project at: http://www.grenoble.prabi.fr/trac/ecoPrimers.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA Primers , Genomics/methods , Software , Algorithms , Animals , Data Mining , Genetic Markers , Genome, Bacterial , Genome, Chloroplast , Genome, Mitochondrial , Polymerase Chain Reaction , Vertebrates/genetics
6.
BMC Genomics ; 11: 434, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20637073

ABSTRACT

BACKGROUND: DNA barcoding is a key tool for assessing biodiversity in both taxonomic and environmental studies. Essential features of barcodes include their applicability to a wide spectrum of taxa and their ability to identify even closely related species. Several DNA regions have been proposed as barcodes and the region selected strongly influences the output of a study. However, formal comparisons between barcodes remained limited until now. Here we present a standard method for evaluating barcode quality, based on the use of a new bioinformatic tool that performs in silico PCR over large databases. We illustrate this approach by comparing the taxonomic coverage and the resolution of several DNA regions already proposed for the barcoding of vertebrates. To assess the relationship between in silico and in vitro PCR, we also developed specific primers amplifying different species of Felidae, and we tested them using both kinds of PCR RESULTS: Tests on specific primers confirmed the correspondence between in silico and in vitro PCR. Nevertheless, results of in silico and in vitro PCRs can be somehow different, also because tuning PCR conditions can increase the performance of primers with limited taxonomic coverage. The in silico evaluation of DNA barcodes showed a strong variation of taxonomic coverage (i.e., universality): barcodes based on highly degenerated primers and those corresponding to the conserved region of the Cyt-b showed the highest coverage. As expected, longer barcodes had a better resolution than shorter ones, which are however more convenient for ecological studies analysing environmental samples. CONCLUSIONS: In silico PCR could be used to improve the performance of a study, by allowing the preliminary comparison of several DNA regions in order to identify the most appropriate barcode depending on the study aims.


Subject(s)
Computational Biology , DNA Fingerprinting/methods , Animals , DNA Fingerprinting/standards , DNA Primers/genetics , Databases, Genetic , Humans , Mice , Polymerase Chain Reaction , Quality Control , Reproducibility of Results , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...