Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
IEEE Comput Graph Appl ; 37(5): 50-60, 2017.
Article in English | MEDLINE | ID: mdl-28945579

ABSTRACT

Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

2.
IEEE Trans Vis Comput Graph ; 22(1): 210-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26529701

ABSTRACT

Learning and gaining knowledge of Roman history is an area of interest for students and citizens at large. This is an example of a subject with great sweep (with many interrelated sub-topics over, in this case, a 3,000 year history) that is hard to grasp by any individual and, in its full detail, is not available as a coherent story. In this paper, we propose a visual analytics approach to construct a data driven view of Roman history based on a large collection of Wikipedia articles. Extracting and enabling the discovery of useful knowledge on events, places, times, and their connections from large amounts of textual data has always been a challenging task. To this aim, we introduce VAiRoma, a visual analytics system that couples state-of-the-art text analysis methods with an intuitive visual interface to help users make sense of events, places, times, and more importantly, the relationships between them. VAiRoma goes beyond textual content exploration, as it permits users to compare, make connections, and externalize the findings all within the visual interface. As a result, VAiRoma allows users to learn and create new knowledge regarding Roman history in an informed way. We evaluated VAiRoma with 16 participants through a user study, with the task being to learn about roman piazzas through finding relevant articles and new relationships. Our study results showed that the VAiRoma system enables the participants to find more relevant articles and connections compared to Web searches and literature search conducted in a roman library. Subjective feedback on VAiRoma was also very positive. In addition, we ran two case studies that demonstrate how VAiRoma can be used for deeper analysis, permitting the rapid discovery and analysis of a small number of key documents even when the original collection contains hundreds of thousands of documents.

3.
IEEE Trans Vis Comput Graph ; 20(12): 1853-62, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26356899

ABSTRACT

We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.


Subject(s)
Computer Graphics , Informatics/methods , Security Measures , Software , Cyclonic Storms , Disaster Planning , Equipment and Supplies , Humans , Models, Theoretical , Power Plants , Transportation , Weather
4.
IEEE Trans Vis Comput Graph ; 19(12): 2002-11, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051766

ABSTRACT

Analyzing large textual collections has become increasingly challenging given the size of the data available and the rate that more data is being generated. Topic-based text summarization methods coupled with interactive visualizations have presented promising approaches to address the challenge of analyzing large text corpora. As the text corpora and vocabulary grow larger, more topics need to be generated in order to capture the meaningful latent themes and nuances in the corpora. However, it is difficult for most of current topic-based visualizations to represent large number of topics without being cluttered or illegible. To facilitate the representation and navigation of a large number of topics, we propose a visual analytics system--HierarchicalTopic (HT). HT integrates a computational algorithm, Topic Rose Tree, with an interactive visual interface. The Topic Rose Tree constructs a topic hierarchy based on a list of topics. The interactive visual interface is designed to present the topic content as well as temporal evolution of topics in a hierarchical fashion. User interactions are provided for users to make changes to the topic hierarchy based on their mental model of the topic space. To qualitatively evaluate HT, we present a case study that showcases how HierarchicalTopics aid expert users in making sense of a large number of topics and discovering interesting patterns of topic groups. We have also conducted a user study to quantitatively evaluate the effect of hierarchical topic structure. The study results reveal that the HT leads to faster identification of large number of relevant topics. We have also solicited user feedback during the experiments and incorporated some suggestions into the current version of HierarchicalTopics.


Subject(s)
Artificial Intelligence , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Natural Language Processing , Pattern Recognition, Automated/methods , Software , User-Computer Interface , Algorithms , Computer Graphics , Documentation/methods , Image Enhancement/methods
5.
IEEE Trans Vis Comput Graph ; 19(7): 1109-21, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23661008

ABSTRACT

Existing research suggests that individual personality differences are correlated with a user's speed and accuracy in solving problems with different types of complex visualization systems. We extend this research by isolating factors in personality traits as well as in the visualizations that could have contributed to the observed correlation. We focus on a personality trait known as "locus of control” (LOC), which represents a person's tendency to see themselves as controlled by or in control of external events. To isolate variables of the visualization design, we control extraneous factors such as color, interaction, and labeling. We conduct a user study with four visualizations that gradually shift from a list metaphor to a containment metaphor and compare the participants' speed, accuracy, and preference with their locus of control and other personality factors. Our findings demonstrate that there is indeed a correlation between the two: participants with an internal locus of control perform more poorly with visualizations that employ a containment metaphor, while those with an external locus of control perform well with such visualizations. These results provide evidence for the externalization theory of visualization. Finally, we propose applications of these findings to adaptive visual analytics and visualization evaluation.


Subject(s)
Internal-External Control , Personality , Visual Perception , Age Factors , Computer Graphics , Extraversion, Psychological , Humans , Introversion, Psychological , Personality Assessment , Sex Factors
6.
IEEE Trans Vis Comput Graph ; 18(1): 93-105, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22076487

ABSTRACT

Many text collections with temporal references, such as news corpora and weblogs, are generated to report and discuss real life events. Thus, event-related tasks, such as detecting real life events that drive the generation of the text documents, tracking event evolutions, and investigating reports and commentaries about events of interest, are important when exploring such text collections. To incorporate and leverage human efforts in conducting such tasks, we propose a novel visual analytics approach named EventRiver. EventRiver integrates event-based automated text analysis and visualization to reveal the events motivating the text generation and the long term stories they construct. On the visualization, users can interactively conduct tasks such as event browsing, tracking, association, and investigation. A working prototype of EventRiver has been implemented for exploring news corpora. A set of case studies, experiments, and a preliminary user test have been conducted to evaluate its effectiveness and efficiency.


Subject(s)
Computer Graphics , Database Management Systems , Mass Media , Models, Theoretical , Semantics , Cluster Analysis , Databases, Factual , Humans , Time Factors , User-Computer Interface
7.
IEEE Comput Graph Appl ; 30(5): 18-9, 2010.
Article in English | MEDLINE | ID: mdl-25250409
8.
IEEE Trans Vis Comput Graph ; 15(6): 1383-90, 2009.
Article in English | MEDLINE | ID: mdl-19834212

ABSTRACT

We present an interactive framework for exploring space-time and form-function relationships in experimentally collected high-resolution biomechanical data sets. These data describe complex 3D motions (e.g. chewing, walking, flying) performed by animals and humans and captured via high-speed imaging technologies, such as biplane fluoroscopy. In analyzing these 3D biomechanical motions, interactive 3D visualizations are important, in particular, for supporting spatial analysis. However, as researchers in information visualization have pointed out, 2D visualizations can also be effective tools for multi-dimensional data analysis, especially for identifying trends over time. Our approach, therefore, combines techniques from both 3D and 2D visualizations. Specifically, it utilizes a multi-view visualization strategy including a small multiples view of motion sequences, a parallel coordinates view, and detailed 3D inspection views. The resulting framework follows an overview first, zoom and filter, then details-on-demand style of analysis, and it explicitly targets a limitation of current tools, namely, supporting analysis and comparison at the level of a collection of motions rather than sequential analysis of a single or small number of motions. Scientific motion collections appropriate for this style of analysis exist in clinical work in orthopedics and physical rehabilitation, in the study of functional morphology within evolutionary biology, and in other contexts. An application is described based on a collaboration with evolutionary biologists studying the mechanics of chewing motions in pigs. Interactive exploration of data describing a collection of more than one hundred experimentally captured pig chewing cycles is described.


Subject(s)
Biomechanical Phenomena/physiology , Computational Biology/methods , Computer Graphics , Databases, Factual , Image Processing, Computer-Assisted/methods , Bone and Bones , Fluoroscopy , Movement
12.
IEEE Trans Vis Comput Graph ; 14(6): 1165-72, 2008.
Article in English | MEDLINE | ID: mdl-18988960

ABSTRACT

Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within individual probe interfaces, which depict the local data in user-defined regions-of-interest. Our probe concept can be incorporated into a variety of geospatial visualizations to empower users with the ability to observe, coordinate, and compare data across multiple local regions. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. We illustrate the effectiveness of our technique over traditional interfaces by incorporating it within three existing geospatial visualization systems: an agent-based social simulation, a census data exploration tool, and an 3D GIS environment for analyzing urban change over time. In each case, the probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users.

13.
IEEE Trans Vis Comput Graph ; 13(6): 1169-75, 2007.
Article in English | MEDLINE | ID: mdl-17968061

ABSTRACT

Numerous systems have been developed to display large collections of data for urban contexts; however, most have focused on layering of single dimensions of data and manual calculations to understand relationships within the urban environment. Furthermore, these systems often limit the userâs perspectives on the data, thereby diminishing the userâs spatial understanding of the viewing region. In this paper, we introduce a highly interactive urban visualization tool that provides intuitive understanding of the urban data. Our system utilizes an aggregation method that combines buildings and city blocks into legible clusters, thus providing continuous levels of abstraction while preserving the userâs mental model of the city. In conjunction with a 3D view of the urban model, a separate but integrated information visualization view displays multiple disparate dimensions of the urban data, allowing the user to understand the urban environment both spatially and cognitively in one glance. For our evaluation, expert users from various backgrounds viewed a real city model with census data and confirmed that our system allowed them to gain more intuitive and deeper understanding of the urban model from different perspectives and levels of abstraction than existing commercial urban visualization systems.

14.
IEEE Trans Vis Comput Graph ; 13(3): 494-507, 2007.
Article in English | MEDLINE | ID: mdl-17356216

ABSTRACT

Few existing visualization systems can handle large data sets with hundreds of dimensions, since high-dimensional data sets cause clutter on the display and large response time in interactive exploration. In this paper, we present a significantly improved multidimensional visualization approach named Value and Relation (VaR) display that allows users to effectively and efficiently explore large data sets with several hundred dimensions. In the VaR display, data values and dimension relationships are explicitly visualized in the same display by using dimension glyphs to explicitly represent values in dimensions and glyph layout to explicitly convey dimension relationships. In particular, pixel-oriented techniques and density-based scatterplots are used to create dimension glyphs to convey values. Multidimensional scaling, Jigsaw map hierarchy visualization techniques, and an animation metaphor named Rainfall are used to convey relationships among dimensions. A rich set of interaction tools has been provided to allow users to interactively detect patterns of interest in the VaR display. A prototype of the VaR display has been fully implemented. The case studies presented in this paper show how the prototype supports interactive exploration of data sets of several hundred dimensions. A user study evaluating the prototype is also reported in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...