Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38300780

ABSTRACT

Phylogenetic networks generalize phylogenetic trees in order to model reticulation events. Although the comparison of phylogenetic trees is well studied, and there are multiple ways to do it in an efficient way, the situation is much different for phylogenetic networks. Some classes of phylogenetic networks, mainly tree-child networks, are known to be classified efficiently by their µ-representation, which essentially counts, for every node, the number of paths to each leaf. In this article, we introduce the extended µ-representation of networks, where the number of paths to reticulations is also taken into account. This modification allows us to distinguish orchard networks and to define a metric on the space of such networks that can, moreover, be computed efficiently. The class of orchard networks, as well as being one of the classes with biological significance (one such network can be interpreted as a tree with extra arcs involving coexisting organisms), is one of the most generic ones (in mathematical terms) for which such a representation can (conjecturally) exist, since a slight relaxation of the definition leads to a problem that is Graph Isomorphism Complete.


Subject(s)
Algorithms , Computational Biology , Phylogeny , Computational Biology/methods , Models, Genetic
2.
Bull Math Biol ; 86(1): 10, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38117376

ABSTRACT

Phylogenetic networks are an extension of phylogenetic trees that allow for the representation of reticulate evolution events. One of the classes of networks that has gained the attention of the scientific community over the last years is the class of orchard networks, that generalizes tree-child networks, one of the most studied classes of networks. In this paper we focus on the combinatorial and algorithmic problem of the generation of binary orchard networks, and also of binary tree-child networks. To this end, we use that these networks are defined as those that can be recovered by reversing a certain reduction process. Then, we show how to choose a "minimum" reduction process among all that can be applied to a network, and hence we get a unique representation of the network that, in fact, can be given in terms of sequences of pairs of integers, whose length is related to the number of leaves and reticulations of the network. Therefore, the generation of networks is reduced to the generation of such sequences of pairs. Our main result is a recursive method for the efficient generation of all minimum sequences, and hence of all orchard (or tree-child) networks with a given number of leaves and reticulations. An implementation in C of the algorithms described in this paper, along with some computational experiments, can be downloaded from the public repository  https://github.com/gerardet46/OrchardGenerator . Using this implementation, we have computed the number of binary orchard networks with at most 6 leaves and 8 reticulations.


Subject(s)
Mathematical Concepts , Models, Biological , Humans , Phylogeny , Algorithms , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...