Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Am J Hosp Palliat Care ; 41(1): 26-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36943176

ABSTRACT

BACKGROUND: Communication is one of the central axes around which end-of-life care revolves in the context of palliative care. Communication of bad news is reported as one of the most difficult and stressful tasks by palliative care professionals. Therefore, the aim of this study is to identify aspects related to the communication of bad news in palliative care in Spain. METHODS: Descriptive cross-sectional study. An ad hoc questionnaire was designed and sent by e-mail to all palliative care teams in Spain. RESULTS: Overall, 206 professionals (102 nurses, 88 physicians and 16 psychologists) completed the questionnaire. A total of 60.2% considered their communication of bad news skills to be good or very good. This was related to older age, experience in both the profession and palliative care, and to having received specific postgraduate training (P < .001). Around 42.2% perform communication of bad news with the patient first, which is associated with lower skill (P = .013). About 78.15% of the professionals do not use any specific protocol. CONCLUSION: This study suggests that patients access palliative care with little information about their diagnosis and prognosis. The barriers identified in the communication of bad news are the lack of specific education and training in protocol management, the difficult balance between hope and honesty, the young age of the patient, and the family.


Subject(s)
Palliative Care , Physician-Patient Relations , Humans , Truth Disclosure , Cross-Sectional Studies , Spain , Communication
2.
J Exp Clin Cancer Res ; 42(1): 328, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031171

ABSTRACT

BACKGROUND: Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS: We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS: We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS: Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.


Subject(s)
Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Animals , Mice , Proteome/metabolism , Secretome , Lung/pathology , Lung Neoplasms/pathology , Osteosarcoma/pathology , Bone Neoplasms/pathology , Glycoproteins/metabolism , Biomarkers/metabolism , Tumor Microenvironment , Extracellular Matrix Proteins/metabolism
3.
Aging Dis ; 14(4): 1105-1122, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37163425

ABSTRACT

The aging process is accompanied by a continuous decline of the cardiac system, disrupting the homeostatic regulation of cells, organs, and systems. Aging increases the prevalence of cardiovascular diseases, thus heart failure and mortality. Understanding the cardiac aging process is of pivotal importance once it allows us to design strategies to prevent age-related cardiac events and increasing the quality of live in the elderly. In this review we provide an overview of the cardiac aging process focus on the following topics: cardiac structural and functional modifications; cellular mechanisms of cardiac dysfunction in the aging; genetics and epigenetics in the development of cardiac diseases; and aging heart and response to the exercise.

4.
Cell Death Dis ; 14(2): 133, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797240

ABSTRACT

Polo-like kinase 4 (Plk4), the major regulator of centriole biogenesis, has emerged as a putative therapeutic target in cancer due to its abnormal expression in human carcinomas, leading to centrosome number deregulation, mitotic defects and chromosomal instability. Moreover, Plk4 deregulation promotes tumor growth and metastasis in mouse models and is significantly associated with poor patient prognosis. Here, we further investigate the role of Plk4 in carcinogenesis and show that its overexpression significantly potentiates resistance to cell death by anoikis of nontumorigenic p53 knock-out (p53KO) mammary epithelial cells. Importantly, this effect is independent of Plk4's role in centrosome biogenesis, suggesting that this kinase has additional cellular functions. Interestingly, the Plk4-induced anoikis resistance is associated with the induction of a stable hybrid epithelial-mesenchymal phenotype and is partially dependent on P-cadherin upregulation. Furthermore, we found that the conditioned media of Plk4-induced p53KO mammary epithelial cells also induces anoikis resistance of breast cancer cells in a paracrine way, being also partially dependent on soluble P-cadherin secretion. Our work shows, for the first time, that high expression levels of Plk4 induce anoikis resistance of both mammary epithelial cells with p53KO background, as well as of breast cancer cells exposed to their secretome, which is partially mediated through P-cadherin upregulation. These results reinforce the idea that Plk4, independently of its role in centrosome biogenesis, functions as an oncogene, by impacting the tumor microenvironment to promote malignancy.


Subject(s)
Breast Neoplasms , Tumor Suppressor Protein p53 , Animals , Female , Humans , Mice , Anoikis , Breast Neoplasms/genetics , Epithelial Cells , Phenotype , Protein Serine-Threonine Kinases/genetics , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Epithelial-Mesenchymal Transition
5.
Methods Mol Biol ; 2572: 155-166, 2023.
Article in English | MEDLINE | ID: mdl-36161415

ABSTRACT

The chick embryo chorioallantoic membrane (CAM), an extensively vascularized extraembryonic membrane, has been widely used to study several aspects of tumor development including tumor-induced angiogenesis, tumor cell proliferation, and metastasis. Based on the tumor cell/CAM system, we focused here on the identification and quantification of cancer stem cells. We validated the CAM model as a suitable model to evaluate stem cell activity in a given mixed cell population.


Subject(s)
Chorioallantoic Membrane , Neoplasms , Animals , Chick Embryo , Chickens , Humans , Neovascularization, Pathologic , Stem Cells
6.
Pharmaceutics ; 14(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890283

ABSTRACT

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

7.
Cells ; 11(6)2022 03 09.
Article in English | MEDLINE | ID: mdl-35326385

ABSTRACT

Breast cancer is the most common malignancy affecting women worldwide. Importantly, there have been significant improvements in prevention, early diagnosis, and treatment options, which resulted in a significant decrease in breast cancer mortality rates. Nevertheless, the high rates of incidence combined with therapy resistance result in cancer relapse and metastasis, which still contributes to unacceptably high mortality of breast cancer patients. In this context, a small subpopulation of highly tumourigenic cancer cells within the tumour bulk, commonly designated as breast cancer stem cells (BCSCs), have been suggested as key elements in therapy resistance, which are responsible for breast cancer relapses and distant metastasis. Thus, improvements in BCSC-targeting therapies are crucial to tackling the metastatic progression and might allow therapy resistance to be overcome. However, the design of effective and specific BCSC-targeting therapies has been challenging since there is a lack of specific biomarkers for BCSCs, and the most common clinical approaches are designed for commonly altered BCSCs signalling pathways. Therefore, the search for a new class of BCSC biomarkers, such as the expression of membrane proteins with cancer stem cell potential, is an area of clinical relevance, once membrane proteins are accessible on the cell surface and easily recognized by specific antibodies. Here, we discuss the significance of BCSC membrane biomarkers as potential prognostic and therapeutic targets, reviewing the CSC-targeting therapies under clinical trials for breast cancer.


Subject(s)
Breast Neoplasms , Biomarkers/metabolism , Breast Neoplasms/pathology , Female , Humans , Membrane Proteins/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplastic Stem Cells/pathology
8.
J Neurooncol ; 156(3): 453-464, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35066764

ABSTRACT

PURPOSE: Glioblastoma is the most common primary malignant brain tumor in the adult, whose grim prognosis largely relates to the absence of effective treatment targets. Given its success in other cancers, immunotherapy has been trialed in glioblastoma and failed to demonstrate the expected benefit. Importantly, these disappointing results highlight the importance of understanding the unique and transforming biology of glioblastoma and its microenvironment. Our goal was to evaluate and characterize the expression of PD-L1 through immunohistochemistry in a large glioblastoma cohort. We further studied PD-L1 expression-associated prognosis and its correlation to systemic and neuropathological parameters. METHODS: A series of 352 glioblastoma specimens (313 initial resection, 39 matched recurrences) was collected, with a detailed characterization of tumor neuropathological characteristics, including the presence, density and location of tumor infiltrating lymphocytes (TIL). Two hematological markers, absolute lymphocyte count and neutrophil-lymphocyte ratio (NLR), were used to analyze and correlate with systemic inflammation and immunosuppression. Immunohistochemistry was performed to evaluate PD-L1 expression. RESULTS: Membranous PD-L1 expression was identified in 31% (98/313) of newly diagnosed and 46% (18/39) of matched recurrent tumors. TIL were found in 26% (82/313) of primary tumors and both density and location were found to be significantly associated with PD-L1 expression (p < 0.001). Interestingly, PD-L1 expressing tumors had more frequently areas with sarcomatous differentiation (p < 0.001) and were significantly associated with lower lymphocyte count (p = 0.018) and higher NLR ratio (p = 0.004) upon diagnosis. Importantly, PD-L1 expression was an independent poor prognostic marker in our cohort. CONCLUSION: Taken together, our data points to a putative role for PD-L1 expression in glioblastoma biology, which correlates to poor patient overall survival, as well as with a general systemic inflammatory status and immunosuppression.


Subject(s)
B7-H1 Antigen , Glioblastoma , Adult , B7-H1 Antigen/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Prognosis
9.
Biomedicines ; 9(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34680444

ABSTRACT

Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.

10.
Cells ; 9(11)2020 11 09.
Article in English | MEDLINE | ID: mdl-33182375

ABSTRACT

Brain metastases remain an unmet clinical need in breast oncology, being frequently found in HER2-overexpressing and triple-negative carcinomas. These tumors were reported to be highly cancer stem-like cell-enriched, suggesting that brain metastases probably arise by the seeding of cancer cells with stem features. Accordingly, we found that brain-tropic breast cancer cells show increased stem cell activity and tumorigenic capacity in the chick embryo choriallantoic membrane when compared to the parental cell line. These observations were supported by a significant increase in their stem cell frequency and by the enrichment for the breast cancer stem cell (BCSC) phenotype CD44+CD24-/low. Based on this data, the expression of BCSC markers (CD44, CD49f, P-cadherin, EpCAM, and ALDH1) was determined and found to be significantly enriched in breast cancer brain metastases when compared to primary tumors. Therefore, a brain (BR)-BCSC signature was defined (3-5 BCSC markers), which showed to be associated with decreased brain metastases-free and overall survival. Interestingly, this signature significantly predicted a worse prognosis in lymph node-positive patients, acting as an independent prognostic factor. Thus, an enrichment of a BCSC signature was found in brain metastases, which can be used as a new prognostic factor in clinically challenging breast cancer patients.


Subject(s)
Brain Neoplasms/pathology , Breast Neoplasms/pathology , Lymph Nodes/pathology , Neoplastic Stem Cells/pathology , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/pathology , Female , Humans , Kaplan-Meier Estimate , Mice , Multivariate Analysis , Prognosis , Proportional Hazards Models
11.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33396951

ABSTRACT

The high plasticity of cancer stem-like cells (CSCs) allows them to differentiate and proliferate, specifically when xenotransplanted subcutaneously into immunocompromised mice. CSCs are highly tumorigenic, even when inoculated in small numbers. Thus, in vivo limiting dilution assays (LDA) in mice are the current gold standard method to evaluate CSC enrichment and activity. The chick embryo chorioallantoic membrane (CAM) is a low cost, naturally immune-incompetent and reproducible model widely used to evaluate the spontaneous growth of human tumor cells. Here, we established a CAM-LDA assay able to rapidly reproduce tumor specificities-in particular, the ability of the small population of CSCs to form tumors. We used a panel of organotropic metastatic breast cancer cells, which show an enrichment in a stem cell gene signature, enhanced CD44+/CD24-/low cell surface expression and increased mammosphere-forming efficiency (MFE). The size of CAM-xenografted tumors correlate with the number of inoculated cancer cells, following mice xenograft growth pattern. CAM and mice tumors are histologically comparable, displaying both breast CSC markers CD44 and CD49f. Therefore, we propose a new tool for studying CSC prevalence and function-the chick CAM-LDA-a model with easy handling, accessibility, rapid growth and the absence of ethical and regulatory constraints.


Subject(s)
Breast Neoplasms/pathology , Chorioallantoic Membrane , Neoplastic Stem Cells/pathology , Animals , Apoptosis , Breast Neoplasms/metabolism , Cell Movement , Cell Proliferation , Chick Embryo , Female , Humans , Hyaluronan Receptors/metabolism , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Adv Exp Med Biol ; 1139: 83-103, 2019.
Article in English | MEDLINE | ID: mdl-31134496

ABSTRACT

In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.Recently, adding more complexity to the system, it has been demonstrated that BCSCs maintain high levels of plasticity, being able to change between mesenchymal-like and epithelial-like states in a process regulated by the tumour microenvironment. These stem cell state transitions play a fundamental role in the process of tumour metastasis, as well as in the resistance to putative therapeutic strategies to target these cells. In this chapter, it will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis. A major focus will also be given to potential clinical implications of these discoveries in breast cancer recurrence and to possible BCSC targeted therapeutics by the use of specific biomarkers.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Stem Cells/cytology , Tumor Microenvironment , Biomarkers, Tumor , Epithelial-Mesenchymal Transition , Female , Humans , Neoplasm Recurrence, Local
14.
J Med Genet ; 56(4): 199-208, 2019 04.
Article in English | MEDLINE | ID: mdl-30661051

ABSTRACT

CDH1 encodes E-cadherin, a key protein in adherens junctions. Given that E-cadherin is involved in major cellular processes such as embryogenesis and maintenance of tissue architecture, it is no surprise that deleterious effects arise from its loss of function. E-cadherin is recognised as a tumour suppressor gene, and it is well established that CDH1 genetic alterations cause diffuse gastric cancer and lobular breast cancer-the foremost manifestations of the hereditary diffuse gastric cancer syndrome. However, in the last decade, evidence has emerged demonstrating that CDH1 mutations can be associated with lobular breast cancer and/or several congenital abnormalities, without any personal or family history of diffuse gastric cancer. To date, no genotype-phenotype correlations have been observed. Remarkably, there are reports of mutations affecting the same nucleotide but inducing distinct clinical outcomes. In this review, we bring together a comprehensive analysis of CDH1-associated disorders and germline alterations found in each trait, providing important insights into the biological mechanisms underlying E-cadherin's pleiotropic effects. Ultimately, this knowledge will impact genetic counselling and will be relevant to the assessment of risk of cancer development or congenital malformations in CDH1 mutation carriers.


Subject(s)
Antigens, CD/genetics , Cadherins/genetics , Cell Differentiation/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Germ-Line Mutation , Alleles , Breast Neoplasms/genetics , Cell Transformation, Neoplastic , Cleft Lip/genetics , Cleft Palate/genetics , Ectropion/genetics , Female , Genetic Association Studies/methods , Genotype , Humans , Male , Stomach Neoplasms/genetics , Tooth Abnormalities/genetics
15.
Cell Commun Signal ; 16(1): 75, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30404626

ABSTRACT

BACKGROUND: Basal-like breast cancer (BLBC) is a poor prognosis subgroup of triple-negative carcinomas that still lack specific target therapies and accurate biomarkers for treatment selection. P-cadherin is frequently overexpressed in these tumors, promoting cell invasion, stem cell activity and tumorigenesis by the activation of Src-Family kinase (SRC) signaling. Therefore, our aim was to evaluate if the treatment of BLBC cells with dasatinib, the FDA approved SRC inhibitor, would impact on P-cadherin induced tumor aggressive behavior. METHODS: P-cadherin and SRC expression was evaluated in a series of invasive Breast Cancer and contingency tables and chi-square tests were performed. Cell-cell adhesion measurements were performed by Atomic Force Microscopy, where frequency histograms and Gaussian curves were applied. 2D and 3D cell migration and invasion, proteases secretion and self-renew potential were evaluated in vitro. Student's t-tests were used to determine statistically significant differences. The cadherin/catenin complex interactions were evaluated by in situ proximity-ligation assay, and statistically significant results were determined by using Mann-Whitney test with a Bonferroni correction. In vivo xenograft mouse models were used to evaluate the impact of dasatinib on tumor growth and survival. ANOVA test was used to evaluate the differences in tumor size, considering a confidence interval of 95%. Survival curves were estimated by the Kaplan-Meier's method, using the log-rank test to assess significant differences for mice overall survival. RESULTS: Our data demonstrated that P-cadherin overexpression is significantly associated with SRC activation in breast cancer cells, which was also validated in a large series of primary tumor samples. SRC activity suppression with dasatinib significantly prevented the in vitro functional effects of P-cadherin overexpressing cells, as well as their in vivo tumorigenic and metastatic ability, by increasing mice overall survival. Mechanistically, SRC inhibition affects P-cadherin downstream signaling, rescues the E-cadherin/p120-catenin complex to the cell membrane, recovering cell-cell adhesion function. CONCLUSIONS: In conclusion our findings show that targeting P-cadherin/SRC signaling and functional activity may open novel therapeutic opportunities for highly aggressive and poor prognostic basal-like breast cancer.


Subject(s)
Breast Neoplasms/pathology , Cadherins/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , src-Family Kinases/antagonists & inhibitors , Animals , Carcinogenesis/drug effects , Catenins/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Dasatinib/pharmacology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Neoplasm Metastasis , Delta Catenin
16.
R Soc Open Sci ; 5(8): 180577, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30225051

ABSTRACT

Little is known about the structural patterns and dynamics of the first global trading market (FGTM), which emerged during the sixteenth century as a result of the Iberian expansion, let alone how it compares to today's global financial markets. Here we build a representative network of the FGTM using information contained in 8725 (handwritten) Bills of Exchange from that time-which were (human) interpreted and digitalized into an online database. We show that the resulting temporal network exhibits a hierarchical, highly clustered and disassortative structure, with a power-law dependence on the connectivity that remains remarkably robust throughout the entire period investigated. Temporal analysis shows that, despite major turnovers in the number and nature of the links-suggesting fast adaptation in response to the geopolitical and financial turmoil experienced at the time-the overall characteristics of the FGTM remain robust and virtually unchanged. The methodology developed here demonstrates the possibility of building and analysing complex trading and finance networks originating from pre-statistical eras, enabling us to highlight the striking similarities between the structural patterns of financial networks separated by centuries in time.

17.
RFO UPF ; 22(3): 368-373, 10/06/2018.
Article in Portuguese | LILACS | ID: biblio-905019

ABSTRACT

Bisfosfonatos são antiabsortivos que agem especificamentesobre a atividade dos osteoclastos. Uma complicaçãograve do seu uso é a osteonecrose dos maxilares,definida como uma área de exposição óssea na regiãomaxilofacial sem resolução espontânea por um períodode no mínimo oito semanas em pacientes com históricode uso de compostos bisfosfonatos, mas que não foramsubmetidos à radioterapia na região de cabeça e pescoço.Tratamentos conservadores são recomendados, masos resultados da literatura são controversos e nem sempreefetivos. Por isso, novas abordagens, como o usodos concentrados plaquetários, têm sido sugeridas. Sãoprodutos autólogos que contém altas concentrações defatores de crescimento e que atuam como moléculasde adesão celular, acelerando o reparo ósseo. Objetivo:descrever, por meio de relato de caso, o uso do plasmarico em fibrina e leucocitária (L-PRF) como forma detratamento da osteonecrose mandibular. Relato do caso:paciente do gênero feminino, 79 anos, diagnosticadacom osteonecrose mandibular associada ao uso de bisfosfonatos,tratada por meio de cirurgia convencionalassociando curetagem óssea e rotação de retalho, massem sucesso. Então, foi submetida à modificação detécnica cirúrgica, associando o uso de plasma rico emfibrina leucocitária (L-PRF), a fim de acelerar o processode reparo ósseo e garantir a cicatrização dos tecidosmoles. Considerações finais: o uso de L-PRF como tratamentoda osteonecrose mandibular estimula o reparoósseo e acelera a cicatrização dos tecidos moles, sendouma alternativa eficaz de tratamento.

18.
Environ Sci Pollut Res Int ; 25(28): 27768-27782, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29600382

ABSTRACT

Prednisolone is a widely prescribed synthetic glucocorticoid and stated to be toxic to a number of non-target aquatic organisms. Its extensive consumption generates environmental concern due to its detection in wastewater samples at concentrations ranged from ng/L to µg/L that requests the application of suitable degradation processes. Regarding the actual treatment options, advanced oxidation processes (AOPs) are presented as a viable alternative. In this work, the comparison in terms of pollutant removal and energetic efficiencies, between different AOPs such as Fenton (F), photo-Fenton (UV/F), photolysis (UV), and hydrogen peroxide/photolysis (UV/H2O2), was carried out. Light diode emission (LED) was the selected source to provide the UV radiation. The UV/F process revealed the best performance, reaching high levels of both degradation and mineralization with low energy consumption. Its optimization was conducted and the operational parameters were iron and H2O2 concentrations and the working volume. Using the response surface methodology with the Box-Behnken design, the effect of independent variables and their interactions on the process response were effectively evaluated. Different responses were analyzed taking into account the prednisolone removal (TOC and drug abatements) and the energy consumptions associated. The obtained model showed an improvement of the UV/F process when treating smaller volumes and when adding high concentrations of H2O2 and Fe2+. The validation of this model was successfully carried out, having only 5% of discrepancy between the model and the experimental results. Finally, the performance of the process when having a real wastewater matrix was also tested, achieving complete mineralization and detoxification after 8 h. In addition, prednisolone degradation products were identified. Finally, the obtained low energy permitted to confirm the viability of the process.


Subject(s)
Hydrogen Peroxide/chemistry , Iron/chemistry , Prednisolone/analysis , Ultraviolet Rays , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Models, Theoretical , Oxidation-Reduction , Photolysis , Prednisolone/radiation effects , Water Pollutants, Chemical/radiation effects
19.
Pulm Pharmacol Ther ; 41: 1-10, 2016 12.
Article in English | MEDLINE | ID: mdl-27603231

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 µm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine ß-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K+ channels and intracellular Ca2+ desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.


Subject(s)
Bronchioles/metabolism , Cystathionine gamma-Lyase/metabolism , Hydrogen Sulfide/metabolism , Soluble Guanylyl Cyclase/metabolism , Animals , Calcium-Binding Proteins/metabolism , Female , Histamine/metabolism , Male , Morpholines/pharmacology , Muscle Relaxation/physiology , Muscle, Smooth/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Organothiophosphorus Compounds/pharmacology , Potassium Channels/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...